• Title/Summary/Keyword: stoichiometric air ratio

Search Result 71, Processing Time 0.027 seconds

ENGINE CONTROL USING COMBUSTION MODEL

  • Ohyama, Y.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 2001
  • The combination of physical models of an advanced engine control system was proposed to obtain sophisticated combustion control in ultra-lean combustion, including homogeneous compression-ignition and activated radical combustion with a light load and in stoichiometric mixture combustion with a full load. Physical models of intake, combustion and engine thermodynamics were incorporated, in which the effects of residual gas from prior cycles on intake air mass and combustion were taken into consideration. The combined control of compression ignition at a light load and sparit ignition at full load for a high compession ratio engine was investigated using simulations. The control strategies of the variable valve timing and the intake pressure were clarified to keep auto-ignition at a light load and prevent knock at a full load.

  • PDF

A Study on the Detonation Characteristics of $C_2H_2$in Shock Tube (충격관을 이용한 $C_2H_2$의 폭굉특성연구)

  • 오규형
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.64-71
    • /
    • 1996
  • Detonation phenomena of $C_2H_2$were invesgated using the various shock tube. To study the detonation characteristics according to the composition of $C_2H_2-0_2$$_2$ and $C_2H_2$-air mixtures, the composition were varied from 5 to 90% and 5 to 50% of acetylene each other. A spiral ring was installed in the shock tube to study the effect of obstacles in DDT phenomena. Detonation velocities were measured using the photodiode, and the DDT phenomena was visualized using the high speed schlieren photograph. From the experimental result, it was found that the detonation velocity was most high near the 1. 8times the stoichiometric ratio of acetylene. And from the visualization of DDT phenomena, it was found that the detonation wave was strengthened throuth the pile up of small compression wave of burned gas. And the obstacles in shock tube accelerate the detonation reaction by turblent effect of flammable gas mixture.

  • PDF

An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor (모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구)

  • Lee, Youn-Joo;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF

Prediction of Spatial Heat Release Rate of Combustion Chamber by Radicals-PLIF (라디칼 PLIF계측을 이용한 연소실의 공간적 열발생율 예측)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.9-16
    • /
    • 2003
  • The Purpose of this study is to investigate the relationships between the local heat release rate and CH concentration have been investigated by numerical simulations of methane-air premixed flames. And simultaneous CH and OH PLIF(Planar Laser Induced Fluorescence) measurement has been also conducted for lean premixed flame as well as for laminar flames. Numerical simulations are conducted for laminar premixed flames and turbulent ones by using PREMIX in CHEMKIN and two dimensional DNS code with GRI mechanism version 2.11, respectively. In the case of laminar premixed flame, the distance between the peak of heat release rate and that of CH concentration is under $91{\mu}m$ for all equivalence ratio calculated in present work. Even for the premixed flame in high intensity turbulence, the distribution of the heat release rate coincides with that of CH mole fraction. For CH PLIF measurements in the laminar premixed flame burner, CH fluorescence intensity as a function of equivalence ratio shows a similar trend with CH mole fraction computed by GRI mechanism. Simultaneous CH and OH PLIF measurement gave us useful information of instantaneous reaction zone. In addition, CH fluorescence can be measured even for lean conditions where CH mole fraction significantly decreases compared with that of stoichiometric condition. It was found that CH PLIF measurements can be applicable to the estimation of the spatial fluctuations of heat release rate in the engine combustion.

  • PDF

Effect of Ash Content on Unburned Carbon and NOx Emission in a Drop Tube Furnace (DTF 를 이용한 석탄 회분 함량에 따른 미연분 및 NOx 배출 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;An, Ke-Ju;Kim, Man-Cheol;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.963-969
    • /
    • 2014
  • Four coal sources that had different ash contents were evaluated in a drop tube furnace (DTF). Combustion experiments were conducted by using several sources with different particle sizes and excess air ratios under air-staging conditions to determine the optimized combustion conditions of high-ash coal, with an emphasis on the combustion efficiency and NOx emissions. The results show that the higher ash content results in a large amount of carbon remaining unburned, and that this effect is dominant when the largest particle size is used. Furthermore, the ash content of coal does affect the Char-NOx concentration, which decreases with the particle size. The results of this study suggest that an air-staged system can be useful to reduce the NOx emissions of high-ash coal and that control of the air stoichiometric ratio of the primary combustion zone (SR1) is effective for reducing NOx emissions, especially by considering unburned carbon contents.

The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser (고 에너지 레이저를 통한 알루미늄-산소 연소현상에 대한 분광분석)

  • Kim, Chang-Hwan;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.608-611
    • /
    • 2011
  • Laser-induced combustions and explosions generated by high laser irradiances were explored by Laser-Induced Breakdown Spectroscopy (LIBS) in rich, and stoichiometric conditions. The laser used for target ablation is a Q-switched Nd:YAG laser with 7 ns pulse duration at wavelength of 1064 nm laser energies from 40 mJ to 2500 mJ ($6.88{\times}10^{10}-6.53{\times}10^{11}\;W/cm^2$). The plasma light source from aluminum detected by the echelle grating spectrometer and coupled to the gated ICCD(a resolution (${\lambda}/{\Delta}{\lambda}$) of 5000). This spectroscopic study has been investigated for obtaining both the atomic signals of aluminum (fuel) - oxygen (oxidizer) and the calculated ambient condition (plasma temperature and electron density). The essence of the paper is observing specific electron density ratio which can support the processes of combustion and explosion between ablated aluminum plume and oxygen from air by inducing high power laser.

  • PDF

Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler (접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구)

  • Kang, Kieseop;Ryu, Changkook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • This study investigated the influence of air staging on combustion and NOx emission in a tangential-firing boiler at a 560 MWe capacity. For air staging, the stoichiometric ratio (SR) for the burner zone was varied from 0.995 to 0.94 while the overall value was fixed at 1.2. The temperature and heat flux in the burner zone and upper furnace corresponded to the distribution of SR, while the total boiler efficiency remained similar. The NOx emission at the furnace exit was reduced by up to 20% when the SR in the burner zone decreased to 0.94. However, the amount of unburned carbon and slagging propensity was not noticeably influenced by the changes in the SR of the burner zone. Therefore, it was favorable to lower the SR of the burner zone for reduction of NOx emission.

Modification of an LPG Engine Generator for Biomass Syngas Application (바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가)

  • Eliezel, Habineza;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

An Experimental Study of Smoke Movement in Tunnel Fire with Natural and Forced Ventilations (자연 및 강제 배기시의 터널 내 연기거동에 관한 실험적 연구)

  • Hwang Cheol-Hong;Yoo Byung-Hun;Kum Sung-Min;Kim Jung-Yup;Shin Hyun-Joon;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.711-721
    • /
    • 2005
  • In order to design of emergency ventilation systems, the smoke movements in tunnel fire with natural and forced ventilation were investigated. Reduced-scale experiments were carried out under the Froude scaling with novel fire source consisting many wicks. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gases were measured at emergency exit point in the natural ventilation case. In forced ventilation, temperature profiles were measured with various flow rate to obtain critical velocity. The results showed that the interval of emergency exit having 225m was estimated reasonably through the measurements of temperature variation and poisonous gas in the natural ventilation. In the case of forced ventilation, the temperature distribution near fire source is remarkably different from that of natural ventilation. Also, the critical velocity to prevent upstream smoke flow has the range of 0.57m/s between 0.64m/s. Finally, it was also identified that although the increase of flow rate can suppress the backward flow of smoke to upstream direction, brings about the increase of flame intensity near stoichiometric fuel/air ratio.

Barium Hexaferrite Thin Films Prepared by the Sol-Gel Method

  • An, Sung-Yong;Lee, Sang-Won;Shim, In-Bo;Yun, Sung-Roe;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • Nano-crystalline hexaferrite $BaFe_{12}O_{19}$(BaM) thin films have been prepared by the sol-gel method. A solution of Ba-nitrate and Fe-nitrates was dissolved in solvent with the stoichiometric ratio Ba/Fe=1/10. Films were spin-coated onto $SiO_2$Si substrates, dried and then heated in air at various temperatures. In films prepared at a drying temperature $T_d=250^{\circ}C$ and a crystallizing temperature 650${\circ}C$, single-phase BaM was obtained. High coercivities were obtained in these nano-crystalline thin films, 4~5.5 kOe for hexaferrite. Polycrystalline BaM/$SiO_2$/Si(100) thin films were characterized by Rutherford backscattering (RBS), thermogravimetry (TGA), differential thermal analysis (DTA), x-ray diffraction (XRD), and vibrating sample magnetometry (VSM), as well as Fourier transform infrared spectroscopy (FTIR). The perpendicular coercivity $H_{C\bot}$ and in-plane coercivity $H_{CII}$ after annealing at 650${\circ}C$ for 2 hours were 4766 Oe and 4480 Oe, respectively, at room temperature, under a maximum applied field of 10 kOe.

  • PDF