• 제목/요약/키워드: stock index prediction

검색결과 96건 처리시간 0.025초

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

Two-Stage forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.427-436
    • /
    • 2000
  • The prediction of stock price index is a very difficult problem because of the complexity of the stock market data it data. It has been studied by a number of researchers since they strong1y affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain Intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network (BPN). Fina1ly, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Using Genetic Algorithms to Support Artificial Neural Networks for the Prediction of the Korea stock Price Index

  • Kim, Kyoung-jae;Ingoo han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
    • /
    • pp.347-356
    • /
    • 2000
  • This paper compares four models of artificial neural networks (ANN) supported by genetic algorithms the prediction of stock price index. Previous research proposed many hybrid models of ANN and genetic algorithms(GA) in order to train the network, to select the feature subsets, and to optimize the network topologies. Most these studies, however, only used GA to improve a part of architectural factors of ANN. In this paper, GA simultaneously optimized multiple factors of ANN. Experimental results show that GA approach to simultaneous optimization for ANN (SOGANN3) outperforms the other approaches.

  • PDF

LSTM 기반 COVID-19 공포지수의 주가 예측 성과: 언택트 주식과 콘택트 주식 (LSTM-based Prediction Performance of COVID-19 Fear Index on Stock Prices: Untact Stocks versus Contact Stocks)

  • 김선웅
    • 한국콘텐츠학회논문지
    • /
    • 제22권8호
    • /
    • pp.329-338
    • /
    • 2022
  • COVID-19 팬데믹으로 비대면 경제 상황이 전개되면서 주식시장에서는 언택트 주식 집단이 등장하였다. 본 연구는 COVID-19 팬데믹 상황에서 감염병 확산에 따른 한국 COVID-19 공포지수를 제안하고, 언택트 주식 수익률과 콘택트 주식 수익률에 대한 영향력을 분석하였다. 실증 분석 결과는 다음과 같다. 첫째, 한국 COVID-19 공포지수를 이용한 그랜저 인과관계 분석 결과 대한항공, 하나투어, CJ CGV, 파라다이스와 같은 콘택트 주식의 수익률에서 유의적인 인과성이 나타났다. 둘째, LSTM 모형 기반의 주가 예측 결과 카카오, 대한항공과 네이버의 예측 성과가 높게 나타났다. 셋째, 예측 주가를 이용한 Alexander 필터 진입 전략의 투자 성과는 네이버 선물과 카카오 선물에서 높게 나타났다. 본 연구는 비대면 경제가 본격화된 COVID-19 상황에서 언택트 주식과 콘택트 주식에 대한 COVID-19 팬데믹 확산의 영향력을 분석하였다는 점에서 기존 연구와 차별점을 찾을 수 있다.

퍼지시스템과 지식정보를 이용한 주가지수 예측 (Stock-Index Prediction using Fuzzy System and Knowledge Information)

  • 김해균;김성신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2030-2032
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting. The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. Results show that both networks can be trained to predict the index. And the fuzzy system is performing slightly better than DPNN and MLP.

  • PDF

Application of Support Vector Machines to the Prediction of KOSPI

  • Kim, Kyoung-jae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.329-337
    • /
    • 2003
  • Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.

  • PDF

신경회로망을 이용한 종합주가지수의 변화율 예측 (Prediction of Monthly Transition of the Composition Stock Price Index Using Error Back-propagation Method)

  • 노종래;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.896-899
    • /
    • 1991
  • This paper presents the neural network method to predict the Korea composition stock price index. The error back-propagation method is used to train the multi-layer perceptron network. Ten of the various economic indices of the past 7 Nears are used as train data and the monthly transition of the composition stock price index is represented by five output neurons. Test results of this method using the data of the last 18 months are very encouraging.

  • PDF

퍼지 모델을 이용한 일별 주가 예측 (Daily Stock Price Prediction Using Fuzzy Model)

  • 황희수
    • 정보처리학회논문지B
    • /
    • 제15B권6호
    • /
    • pp.603-608
    • /
    • 2008
  • 본 논문에서는 주가의 일별 시가, 종가, 최고가, 최저가를 예측하기 위한 퍼지모델을 제안한다. 주가는 시장의 여러 경제 변수에 의존하므로 주가예측 모델의 입력변수를 선택하는 것은 쉽지 않은 일이다. 이와 관련하여 많은 연구가 있지만 정답이 있는 것은 아니다. 본 논문에서는 이를 해결하기 위해 주가 움직임 자체에 주목하는 스틱차트의 기술적 분석에 이용되는 정보를 퍼지규칙의 입력변수로 선택한다. 퍼지규칙은 사다리꼴 멤버쉽함수로 이루어진 전건부와 비선형 수식의 후건부로 구성된다. 최적의 퍼지규칙으로 구성된 퍼지모델을 찾아내기 위해 차분진화가 사용된다. 본 논문에 제안된 방법은 수치 예를 통해 다른 방법과의 비교로 타당성이 검토되며 KOSPI(KOrea composite Stock Price Index) 일별 데이터를 사용, 주가예측 퍼지모델을 구축하고 신경회로망 모델과 비교, 검토된다.

Fuzzy System and Knowledge Information for Stock-Index Prediction

  • Kim, Hae-Gyun;Bae, Hyeon;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.172.6-172
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting, The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. The results show that the fuzzy system is performing slightly better than DPNN and MLP. We can develop the desired fuzzy system by learning methods ...

  • PDF

A Study on the Prediction of Stock Return in Korea's Distribution Industry Using the VKOSPI Index

  • Jeong-Hwan LEE;Gun-Hee LEE;Sam-Ho SON
    • 유통과학연구
    • /
    • 제21권5호
    • /
    • pp.101-111
    • /
    • 2023
  • Purpose: The purpose of this paper is to examine the effect of the VKOSPI index on short-term stock returns after a large-scale stock price shock of individual stocks of firms in the distribution industry in Korea. Research design, data, and methodology: This study investigates the effect of the change of the VKOSPI index or investor mood on abnormal returns after the event date from January 2004 to July 2022. The significance of the abnormal return, which is obtained by subtracting the rate of return estimated by the market model from the rate of actual return on each trading day after the event date, is determined based on T-test and multifactor regression analysis. Results: In Korea's distribution industry, the simultaneous occurrence of a bad investor mood and a large stock price decline, leads to stock price reversals. Conversely, the simultaneous occurrence of a good investor mood and a large-scale stock price rise leads to stock price drifts. We found that the VKOSPI index has strong explanatory power for these reversals and drifts even after considering both company-specific and event-specific factors. Conclusions: In Korea's distribution industry-related stock market, investors show an asymmetrical behavioral characteristic of overreacting to negative moods and underreacting to positive moods.