• Title/Summary/Keyword: stochastic structural mechanics

Search Result 137, Processing Time 0.017 seconds

Effect of non-stationary spatially varying ground motions on the seismic responses of multi-support structures

  • Xu, Zhaoheng;Huang, Tian-Li;Bi, Kaiming
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.325-341
    • /
    • 2022
  • Previous major earthquakes indicated that the earthquake induced ground motions are typical non-stationary processes, which are non-stationary in both amplification and frequency. For the convenience of aseismic design and analysis, it usually assumes that the ground motions at structural supports are stationary processes. The development of time-frequency analysis technique makes it possible to evaluate the non-stationary responses of engineering structures subjected to non-stationary inputs, which is more general and realistic than the analysis method commonly used in engineering. In this paper, the wavelet-based stochastic vibration analysis methodology is adopted to calculate the non-stationary responses of multi-support structures. For comparison, the stationary response based on the standard random vibration method is also investigated. A frame structure and a two-span bridge are analyzed. The effects of non-stationary spatial ground motion and local site conditions are considered, and the influence of structural property on the structural responses are also considered. The analytical results demonstrate that the non-stationary spatial ground motions have significant influence on the response of multi-support structures.

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.

In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach

  • De Domenico, Dario;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.423-442
    • /
    • 2018
  • In this paper, masonry infilled reinforced concrete (RC) frames are analyzed through a probabilistic approach. A macro-modeling technique, based on an equivalent diagonal pin-jointed strut, has been resorted to for modelling the stiffening contribution of the masonry panels. Since it is quite difficult to decide which mechanical characteristics to assume for the diagonal struts in such simplified model, the strut width is here considered as a random variable, whose stochastic characterization stems from a wide set of empirical expressions proposed in the literature. The stochastic analysis of the masonry infilled RC frame is conducted via the Probabilistic Transformation Method by employing a set of space transformation laws of random vectors to determine the probability density function (PDF) of the system response in a direct manner. The knowledge of the PDF of a set of response indicators, including displacements, bending moments, shear forces, interstory drifts, opens an interesting discussion about the influence of the uncertainty of the masonry infills and the resulting implications in a design process.

Free vibration analysis of rotating beams with random properties

  • Hosseini, S.A.A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.293-312
    • /
    • 2005
  • In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element method based on second order perturbation method is applied. To discretize random fields, the three methods of midpoint, interpolation and local average are applied and compared. The effects of rotational speed, setting angle, random property variances, discretization scheme, number of elements, correlation of random fields, correlation function form and correlation length on "Coefficient of Variation" (C.O.V.) of first mode eigenvalue are investigated completely. To determine the significant random properties on the variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where correlation length is small, the convergence rate is lower and more number of elements are necessary for convergence of final response.

An Analysis of Crack Growth Rate Due to Variation of Fatigue Crack Growth Resistance (피로균열전파저항의 변동성에 의한 균열전파율의 해석)

  • Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1139-1146
    • /
    • 1999
  • Reliability analysis of structures based on fracture mechanics requires knowledge on statistical characteristics of the parameter C and m in the fatigue crack growth law, $da/dN=C({\Delta}K)^m$. The purpose of the present study is to investigate if it is possible to predict fatigue crack growth rate by only the fluctuation of the parameter C. In this study, Paris-Erdogan law is adopted, where the author treat the parameter C as random and m as constant. The fluctuation of crack growth rate is assumed only due to the parameter C. The growth resistance coefficient of material to fatigue crack growth (Z=1/C) was treated as a spatial stochastic process, which varies randomly on the crack path. The theoretical crack growth rates at various stress intensity factor range are discussed. Constant ${\Delta}K$ fatigue crack growth tests were performed on the structural steel, SM45C. The experimental data were analyzed to determine the autocorrelation function and Weibull distributions of the fatigue crack growth resistance. And also, the effect of the parameter m of Paris' law due to variation of fatigue crack growth resistance was discussed.

Inserting the mass proportional damping (MPD) system in a concrete shear-type structure

  • Silvestri, Stefano;Trombetti, Tomaso;Ceccoli, Claudio
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.177-193
    • /
    • 2003
  • This paper presents an illustrative example of the advantages offered by inserting added viscous dampers into shear-type structures in accordance with a special scheme based upon the mass proportional damping (MPD) component of the Rayleigh viscous damping matrix. In previous works developed by the authors, it has been widely shown that, within the class of Rayleigh damped systems and under the "equal total cost" constraint, the MPD system provides best overall performance both in terms of minimising top-storey mean square response to a white noise stochastic input and maximising the weighted average of modal damping ratios. A numerical verification of the advantages offered by the application of MPD systems to a realistic structure is presented herein with reference to a 4-storey reinforced-concrete frame. The dynamic response of the frame subjected to both stochastic inputs and several recorded earthquake ground motions is here analysed in detail. The results confirm the good dissipative properties of MPD systems and indicate that this is achieved at the expense of relatively small damping forces.

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

Structural reliability analysis using temporal deep learning-based model and importance sampling

  • Nguyen, Truong-Thang;Dang, Viet-Hung
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.323-335
    • /
    • 2022
  • The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.

Probabilistic shear strength models for reinforced concrete beams without shear reinforcement

  • Song, Jun-Ho;Kang, Won-Hee;Kim, Kang-Su;Jung, Sung-Moon
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.15-38
    • /
    • 2010
  • In order to predict the shear strengths of reinforced concrete beams, many deterministic models have been developed based on rules of mechanics and on experimental test results. While the constant and variable angle truss models are known to provide reliable bases and to give reasonable predictions for the shear strengths of members with shear reinforcement, in the case of members without shear reinforcement, even advanced models with complicated procedures may show lack of accuracy or lead to fairly different predictions from other similar models. For this reason, many research efforts have been made for more accurate predictions, which resulted in important recent publications. This paper develops probabilistic shear strength models for reinforced concrete beams without shear reinforcement based on deterministic shear strength models, understanding of shear transfer mechanisms and influential parameters, and experimental test results reported in the literature. Using a Bayesian parameter estimation method, the biases of base deterministic models are identified as algebraic functions of input parameters and the errors of the developed models remaining after the bias-correction are quantified in a stochastic manner. The proposed probabilistic models predict the shear strengths with improved accuracy and help incorporate the model uncertainties into vulnerability estimations and risk-quantified designs.

Probabilistic Displacement Analysis Using Stochastic Finite Element Method (확률유한요소법을 이용한 확률적 변위분석)

  • 나상민;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.397-402
    • /
    • 2003
  • Generally it is likely that rock mass properties are expressed not by a mean value but by values with variation due to its characteristic uncertainty. This characteristic is one of the most important parts for the design of undergound structures, but yet to be fully examined. Stochastic finite element method (SFEM) is contrary to deterministic finite element method in its concept as the former has been developed in order to take the randomness of structural systems into account. Using SFEM, the response variability of structural system can be obtained and it leads probabilistic stability of structure to be analyzed. In this study, displacement response variability of circular opening with hydrostatic stress field are analyzed in terms of rock mass properties having a certain mean and a standard deviation using the SFEM. The analyzed response variability shows that the necessity of probabilistic stability analysis of underground structures using reliable mean value and standard deviation of deformation modulus.