• 제목/요약/키워드: stochastic simulation.

검색결과 785건 처리시간 0.032초

추계적 생산시스템의 최적 설계를 위한 전자 알고리즘을 애용한 시뮬레이션 최적화 기법 개발 (Simulation Optimization for Optimal at Design of Stochastic Manufacturing System Using Genetic Algorithm)

  • 이영해;유지용;정찬석
    • 한국시뮬레이션학회논문지
    • /
    • 제9권1호
    • /
    • pp.93-108
    • /
    • 2000
  • The stochastic manufacturing system has one or more random variables as inputs that lead to random outputs. Since the outputs are random, they can be considered only as estimates of the true characteristics of the system. These estimates could greatly differ from the corresponding real characteristics for the system. Multiple replications are necessary to get reliable information on the system and output data should be analyzed to get optimal solution. It requires too much computation time practically, In this paper a GA method, named Stochastic Genetic Algorithm(SGA) is proposed and tested to find the optimal solution fast and efficiently by reducing the number of replications.

  • PDF

STOCHASTIC CASHFLOW MODELING INTEGRATED WITH SIMULATION BASED SCHEDULING

  • Dong-Eun Lee;David Arditi;Chang-Baek Son
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.395-398
    • /
    • 2011
  • This paper introduces stochastic cash-flow modeling integrated with simulation based scheduling. The system makes use of CPM schedule data exported from commercial scheduling software, computes the best fit probability distribution functions (PDFs) of historical activity durations, assigns the PDFs identified to respective activities, simulates the schedule network, computes the deterministic and stochastic project cash-flows, plots the corresponding cash flow diagrams, and estimates the best fit PDFs of overdraft and net profit of a project. It analyzes the effect of different distributions of activity durations on the distribution of overdrafts and net profits, and improves reliability compared to deterministic cash flow analysis.

  • PDF

추계학적 보사법을 이용한 한반도 남부에서의 강지진동 연구 (Stochastic Prediction of Strong Ground Motions in Southern Korea)

  • 조남대;박창업
    • 한국지진공학회논문집
    • /
    • 제5권4호
    • /
    • pp.17-26
    • /
    • 2001
  • 한반도 남부에서 발생 가능한 강지진동의 최대 지반운동과 주파수에 따른 특성을 추계학적 모사법을 이용하여 간접적으로 추정하였다. 또한 추계학적 모사법에 적용할 진원과 지진파 감쇠에 관한 입력자료를 계산하였다. 응력강하($\Delta$$\sigma$)는 한반도 남부와 미국 동부 및 중국의 연구결과를 종합하여 100-bar로 추정하였다. 감쇠상수는 x는 1996년 9월부터 1997년 12월까지 발생한 지진 중 비교적 기록상태가 양호한 57개의 관측자료를 이용하여 계산하였으며 진원거리(R)에 대하여 0.00112+0.000224 R로 추정되었다. 이와 같은 응력강하($\Delta$$\sigma$)와 감쇠상수 x등의 입력자료를 추계학적 모사법에 적용한 결과를 바탕으로 진원거리에 따른 강진동 감쇠공식을 유도하였다.한 결과를 바탕으로 진원거리에 따른 강진동 감쇠공식을 유도하였다.

  • PDF

Monte-Carlo 시뮬레이션을 이용한 확률적 차량동역학 해석 (Stochastic Analysis for Vehicle Dynamics using the Monte-Carlo Simulation)

  • 탁태오;주재훈
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.3-12
    • /
    • 2002
  • Monte-Carlo simulation technique has advantages over deterministic simulation in various engineering analysis since Monte-Carlo simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation of steady-state cornering behavior of a truck with design variables like hard points and busing stiffness. The purpose of the simulation is to improve understeer gradient of the truck, which exhibits a small amount of instability when the lateral acceleration is about 0.4g. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Estimating the Loss Ratio of Solar Photovoltaic Electricity Generation through Stochastic Analysis

  • Hong, Taehoon;Koo, Choongwan;Lee, Minhyun
    • Journal of Construction Engineering and Project Management
    • /
    • 제3권3호
    • /
    • pp.23-34
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

ESTIMATING THE LOSS RATIO OF SOLAR PHOTOVOLTAIC ELECTRICITY GENERATION THROUGH STOCHASTIC ANALYSIS

  • Taehoon Hong;Choongwan Koo;Minhyun Lee
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.375-385
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

  • PDF

Stochastic cost optimization of ground improvement with prefabricated vertical drains and surcharge preloading

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jamin, Jay C.;Mission, Jose Leo C.
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.525-537
    • /
    • 2014
  • The typical design of ground improvement with prefabricated vertical drains (PVD) and surcharge preloading involves a series of deterministic analyses using averaged or mean soil properties for the various combination of the PVD spacing and surcharge preloading height that would meet the criteria for minimum consolidation time and required degree of consolidation. The optimum design combination is then selected in which the total cost of ground improvement is a minimum. Considering the variability and uncertainties of the soil consolidation parameters, as well as considering the effects of soil disturbance (smear zone) and drain resistance in the analysis, this study presents a stochastic cost optimization of ground improvement with PVD and surcharge preloading. Direct Monte Carlo (MC) simulation and importance sampling (IS) technique is used in the stochastic analysis by limiting the sampled random soil parameters within the range from a minimum to maximum value while considering their statistical distribution. The method has been verified in a case study of PVD improved ground with preloading, in which average results of the stochastic analysis showed a good agreement with field monitoring data.

Scheme and application of phase delay spectrum towards spatial stochastic wind fields

  • Yan, Qi;Peng, Yongbo;Li, Jie
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.433-455
    • /
    • 2013
  • A phase delay spectrum model towards the representation of spatial coherence of stochastic wind fields is proposed. Different from the classical coherence functions used in the spectral representation methods, the model is derived from the comprehensive description of coherence of fluctuating wind speeds and from the thorough analysis of physical accounts of random factors affecting phase delay, building up a consistent mapping between the simulated fluctuating wind speeds and the basic random variables. It thus includes complete probabilistic information of spatial stochastic wind fields. This treatment prompts a ready and succinct scheme for the simulation of fluctuating wind speeds, and provides a new perspective to the accurate assessment of dynamic reliability of wind-induced structures. Numerical investigations and comparative studies indicate that the developed model is of rationality and of applicability which matches well with the measured data at spatial points of wind fields, whereby the phase spectra at defined datum mark and objective point are feasibly obtained using the numerical scheme associated with the starting-time of phase evolution. In conjunction with the stochastic Fourier amplitude spectrum that we developed previously, the time history of fluctuating wind speeds at any spatial points of wind fields can be readily simulated.

Development of Dam Inflow Simulation Method Based on Bayesian Autoregressive Exogenous Stochastic Volatility (ARXSV) model

  • 파멜라 파비안;김호준;김기철;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.437-437
    • /
    • 2022
  • The prediction of dam inflow rate is crucial for the management of the largest multi-purpose dam in South Korea, the Soyang Dam. The main issue associated with the management of water resources is the stochastic nature of the reservoir inflow leading to an increase in uncertainty associated with the inflow prediction. The Autoregressive (AR) model is commonly used to provide the simulation and forecast of hydrometeorological data. However, because its estimation is based solely on the time-series data, it has the disadvantage of being unable to account for external variables such as climate information. This study proposes the use of the Autoregressive Exogenous Stochastic Volatility (ARXSV) model within a Bayesian modeling framework for increased predictability of the monthly dam inflow by addressing the exogenous and stochastic factors. This study analyzes 45 years of hydrological input data of the Soyang Dam from the year 1974 to 2019. The result of this study will be beneficial to strengthen the potential use of data-driven models for accurate inflow predictions and better reservoir management.

  • PDF

시뮬레이션 최적화 기법과 절삭공정에의 응용 (Simulation Optimization Methods with Application to Machining Process)

  • 양병희
    • 한국시뮬레이션학회논문지
    • /
    • 제3권2호
    • /
    • pp.57-67
    • /
    • 1994
  • For many practical and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. In this paper, with discussion of simulation optimization techniques, a case study in machining process for application of simulation optimization is presented. Most of optimization techniques can be classified as single-or multiple-response techniques. The optimization of single-response category, these strategies are gradient based search methods, stochastic approximate method, response surface method, and heuristic search methods. In the multiple-response category, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphical method, direct search method, constrained optimization, unconstrained optimization, and goal programming methods. The choice of the procedure to employ in simulation optimization depends on the analyst and the problem to be solved.

  • PDF