• 제목/요약/키워드: stochastic evolution algorithm

검색결과 34건 처리시간 0.02초

Placement 확률 진화 알고리즘의 설계와 구현 (Design and Implementation of a Stochastic Evolution Algorithm for Placement)

  • 송호정;송기용
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.87-92
    • /
    • 2002
  • 배치(Placement)는 VLSI 회로의 physical design에서 중요한 단계로서 회로의 성능을 최대로 하기 위하여 회로 모듈의 집합을 배치시키는 문제이며, 배치 문제에서 최적의 해를 얻기 위해 클러스터 성장(cluster growth), 시뮬레이티드 어닐링(simulated annealing; SA), ILP(integer linear programming)등의 방식이 이용된다. 본 논문에서는 배치 문제에 대하여 확률 진화 알고리즘(stochastic evolution algorithm; StocE)을 이용한 해 공간 탐색(solution space search) 방식을 제안하였으며, 제안한 방식을 시뮬레이티드 어닐링 방식과 비교, 분석하였다.

  • PDF

다수제품의 수익성 최대화를 위한 설비입지선정 문제 (The Maximal Profiting Location Problem with Multi-Product)

  • 이상헌;백두현
    • 한국경영과학회지
    • /
    • 제31권4호
    • /
    • pp.139-155
    • /
    • 2006
  • The facility location problem of this paper is distinguished from the maximal covering location problem and the flxed-charge facility location problem. We propose the maximal profiting location problem (MPLP) that is the facility location problem maximizing profit with multi-product. We apply to the simulated annealing algorithm, the stochastic evolution algorithm and the accelerated simulated annealing algorithm to solve this problem. Through a scale-down and extension experiment, the MPLP was validated and all the three algorithm enable the near optimal solution to produce. As the computational complexity is increased, it is shown that the simulated annealing algorithm' is able to find the best solution than the other two algorithms in a relatively short computational time.

Examination of three meta-heuristic algorithms for optimal design of planar steel frames

  • Tejani, Ghanshyam G.;Bhensdadia, Vishwesh H.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.79-86
    • /
    • 2016
  • In this study, the three different meta-heuristics namely the Grey Wolf Optimizer (GWO), Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) algorithms are examined. This study considers optimization of the planer frame to minimize its weight subjected to the strength and displacement constraints as per the American Institute of Steel and Construction - Load and Resistance Factor Design (AISC-LRFD). The GWO algorithm is associated with grey wolves' activities in the social hierarchy. The SFS algorithm works on the natural phenomenon of growth. JADE on the other hand is a powerful self-adaptive version of a differential evolution algorithm. A one-bay ten-story planar steel frame problem is examined in the present work to investigate the design ability of the proposed algorithms. The frame design is produced by optimizing the W-shaped cross sections of beam and column members as per AISC-LRFD standard steel sections. The results of the algorithms are compared. In addition, these results are also mapped with other state-of-art algorithms.

강우모의모형의 모수 추정 최적화 기법의 적합성 분석 (Analysis of the applicability of parameter estimation methods for a stochastic rainfall generation model)

  • 조현곤;이경은;김광섭
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1447-1456
    • /
    • 2017
  • 강우현상을 구조적으로 모형화한 확률적 강우모의모형의 활용성이 증대되는 상황에서 확률적 강우모의모형의 모수에 대한 정확한 추정은 매우 중요하다. 본 연구에서는 확률적 강우모의모형 (Neyman-Scott rectangular pulse model, NSRPM)의 모수를 DFP (Davidon-Fletcher-Powell), GA (genetic algorithm), Nelder-Mead, DE (differential evolution) 기법으로 추정하고 추정된 모수의 적합성을 분석하고 지역특성에 적합한 모수 추정 기법을 제시하였다. 낙동강 유역의 20개 강우 관측 지점을 대상으로 1973년-2017년 기간 동안의 여름철 1시간 강수자료 이용하여 산정된 모형 모수를 분석한 결과, 전반적으로 DE, Nelder-Mead기법이 가장 좋은 결과를 보였으며 DFP, GA기법은 상대적으로 낮은 적합도를 보였다.

A Hybrid Estimation of Distribution Algorithm with Differential Evolution based on Self-adaptive Strategy

  • Fan, Debin;Lee, Jaewan
    • 인터넷정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.1-11
    • /
    • 2021
  • Estimation of distribution algorithm (EDA) is a popular stochastic metaheuristic algorithm. EDA has been widely utilized in various optimization problems. However, it has been shown that the diversity of the population gradually decreases during the iterations, which makes EDA easily lead to premature convergence. This article introduces a hybrid estimation of distribution algorithm (EDA) with differential evolution (DE) based on self-adaptive strategy, namely HEDADE-SA. Firstly, an alternative probability model is used in sampling to improve population diversity. Secondly, the proposed algorithm is combined with DE, and a self-adaptive strategy is adopted to improve the convergence speed of the algorithm. Finally, twenty-five benchmark problems are conducted to verify the performance of HEDADE-SA. Experimental results indicate that HEDADE-SA is a feasible and effective algorithm.

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

유전자 기법과 시뮬레이티드 어닐링을 이용한 최적화 (Optimization Using Gnetic Algorithms and Simulated Annealing)

  • 박정선;류미란
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.939-944
    • /
    • 2001
  • Genetic algorithm is modelled on natural evolution and simulated annealing is based on the simulation of thermal annealing. Both genetic algorithm and simulated annealing are stochastic method. So they can find global optimum values. For compare efficiency of SA and GA's, some function value was maximized. In the result, that was a little better than GA's.

  • PDF

개선된 인공신경망의 학습방법에 의한 강구조물의 설계 (Design of Steel Structures Using the Neural Networks with Improved Learning)

  • 최병한;임정환
    • 한국강구조학회 논문집
    • /
    • 제17권6호통권79호
    • /
    • pp.661-672
    • /
    • 2005
  • 본 연구에서는 많은 양의 함수 계산을 요구하는 확률론적 최적화 기법을 보다 효과적으로 강구조물에 적용하여 수행하고자 한다. 다양한 과학, 응용공학 분야에서 많은 시간이 소요되는 과정을 대체하는데 효과적인 도구로 출현한 인공신경망을 최적화 과정 중 많은 수의 유한요소 해석이 요구되는 재해석 문제에 적용함으로서 유한요소법의 평형방정식의 해의 근사해를 추정하여 재해석과정을 보다 간단하고 용이하게 수행하고자 한다. 또한 이용된 인공신경망의 학습효과의 개선을 위해 유전알고리즘을 적용한다. 확률론적 구조최적화 기법으로는 진화론적 방법에 기초한 알고리즘을 사용한다. 수치 예로써 전형적인 체적(중량)문제와 실 경비함수를 목적함수로 갖는 강구조물 모형에 본 연구의 알고리즘을 적용하여 본 알고리즘의 적용성과 타당성을 증명하였다.

Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발 (A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model)

  • 김장경;권현한;김동균
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.821-831
    • /
    • 2014
  • 추계학적 강수발생 및 모의기법은 수문학적 모형의 입력 자료로써 널리 이용되고 있다. 그러나 Modified Bartlett-Lewis Rectangular Pulse(MBLRP)와 같은 추계학적 포아송 클러스터 강수생성 모형에 대해서 국부최적화 방법을 통한 매개변수 추정 방법은 매개변수의 신뢰성에 상당한 영향을 주는 것으로 알려져 있다. 최근에는 MBLRP 모형의 국부해추정 문제를 해소하기 위하여 Particle Swarm Optimization (PSO) 또는 Shuffled Complex Evolution developed at The University of Arizona (SCE-UA) 등 매개변수 추정 성능이 우수한 전역최적화기법이 도입되고 있지만, 제한된 매개변수 공간에서 항상 신뢰성 있는 매개변수 추정이 가능한 것은 아니다. 뿐만 아니라, 모형의 매개변수들이 갖고 있는 불확실성에 관한 연구는 아직 충분히 논의되지 않았다. 이러한 관점에서 본 연구는 Bayesian 기법과 연계한 MBLRP 모형을 개발하였으며 각 매개변수들의 사후분포(Posterior Distribution)를 유도하여 매개변수가 내포하는 불확실성을 정량적으로 평가하였다. 그 결과 관측값에 대한 시간단위 이하 강수발생 통계치를 효과적으로 복원하고 있음을 확인할 수 있었다.

Evolution Strategy 알고리즘을 이용한 송진선로 주변에서의 최적 자계차폐 위치선정 (Decision of Optimal Magnetic Field Shielding Location around Power System Using Evolution Strategy Algorithm)

  • 최세용;나완수;김동훈;김동수;이준호;박일한;신명철;김병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권1호
    • /
    • pp.5-14
    • /
    • 2002
  • In this paper, we analyze inductive interference in conductive material around 345 kV power transmission line, and evaluate the effects of mitigation wires. Finite element method (FEM) is used to numerically compute induced eddy currents as well as magnetic fields around powder transmission lines. In the analysis model, geometries and electrical properties of various elements such as power transmission line, buried pipe lines, overhead ground wire, and conducting earth are taken into accounts. The calculation shows that mitigation wire reduces fairly good amount of eddy currents in buried pipe line. To find the optimum magnetic field shielding location of mitigation wire, we applied evolution strategy algorithm, a kind of stochastic approach, to the analysis model. Finally, it was shown that we can find more effective shielding effects with optimum location of one mitigation wire than with arbitrary location of multi-mitigation wires around the buried pipe lines.