• Title/Summary/Keyword: stochastic convergence

Search Result 182, Processing Time 0.017 seconds

Modeling Virtual Ecosystems that Consist of Artificial Organisms and Their Environment (인공생명체와 그들을 둘러싸는 환경으로 구성 되어지는 가상생태계 모델링)

  • Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.122-131
    • /
    • 2010
  • This paper introduces the concept of a virtual ecosystem and reports the following three mathematical approaches that could be widely used to construct such an ecosystem, along with examples: (1) a molecular dynamics simulation approach for animal flocking behavior, (2) a stochastic lattice model approach for termite colony behavior, and (3) a rule-based cellular automata approach for biofilm growth. The ecosystem considered in this study consists of artificial organisms and their environment. Each organism in the ecosystem is an agent that interacts autonomously with the dynamic environment, including the other organisms within it. The three types of model were successful to account for each corresponding ecosystem. In order to accurately mimic a natural ecosystem, a virtual ecosystem needs to take many ecological variables into account. However, doing so is likely to introduce excess complexity and nonlinearity in the analysis of the virtual ecosystem's dynamics. Nonetheless, the development of a virtual ecosystem is important, because it can provide possible explanations for various phenomena such as environmental disturbances and disasters, and can also give insights into ecological functions from an individual to a community level from a synthetic viewpoint. As an example of how lower and higher levels in an ecosystem can be connected, this paper also briefly discusses the application of the second model to the simulation of a termite ecosystem and the influence of climate change on the termite ecosystem.

An Improved Reliability-Based Design Optimization using Moving Least Squares Approximation (이동최소자승근사법을 이용한 개선된 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.45-52
    • /
    • 2009
  • In conventional structural design, deterministic optimization which satisfies codified constraints is performed to ensure safety and maximize economical efficiency. However, uncertainties are inevitable due to the stochastic nature of structural materials and applied loads. Thus, deterministic optimization without considering these uncertainties could lead to unreliable design. Recently, there has been much research in reliability-based design optimization (RBDO) taking into consideration both the reliability and optimization. RBDO involves the evaluation of probabilistic constraint that can be estimated using the RIA (Reliability Index Approach) and the PMA(Performance Measure Approach). It is generally known that PMA is more stable and efficient than RIA. Despite the significant advancement in PMA, RBDO still requires large computation time for large-scale applications. In this paper, A new reliability-based design optimization (RBDO) method is presented to achieve the more stable and efficient algorithm. The idea of the new method is to integrate a response surface method (RSM) with PMA. For the approximation of a limit state equation, the moving least squares (MLS) method is used. Through a mathematical example and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.