• Title/Summary/Keyword: stochastic control

Search Result 475, Processing Time 0.041 seconds

Estimating the productive efficienct of distant-water longline vessels in Pacific Ocean using a Stochastic Frontier Approach (SFA를 이용한 태평양 원양연승어업의 어선별 생산효율성 분석)

  • CHO, Heon-Ju;KIM, Doo Nam;KIM, Do Hoon;LEE, Sung Il;KWON, Youjung;KU, Jeong Eun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.357-362
    • /
    • 2017
  • The purpose of this study is to analyze the efficiency of distant-water longline fishing vessels in the Pacific Ocean and the gap in efficiencies among individual vessels. In order to estimate the efficiency, the dependent variable is set as an amount of catch and independent variables include number of crew, number of hooks, number of vessel size, and vessels engine power associated with fishing activities of distant water longline fisheries. Analytical result was shown as follows: first, the average efficiency of distant-water longline fishing vessels in the Pacific Ocean was found to be 94%. Second, the number of hooks were found to be statistically significant in each input variable and the appropriate control of the number of hooks would be expected to have a positive effect on the efficiency. Third, the relationship between the age of a vessel and the efficiency was not found statistically.

Impact of Climate Change on Yongdam Dam Basin (기후변화가 용담댐 유역의 유출에 미치는 영향)

  • Kim, Byung-Sik;Kim, Hung-Soo;Seoh, Byung-Ha;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.185-193
    • /
    • 2004
  • The main purpose of this study is to investigate and evaluate the impact of climate change on the runoff and water resources of Yongdam basin. First, we construct global climate change scenarios using the YONU GCM control run and transient experiments, then transform the YONV GCM grid-box predictions with coarse resolution of climate change into the site-specific values by statistical downscaling techniques. The values are used to modify the parameters of the stochastic weather generator model for the simulation of the site-specific daily weather time series. The weather series fed into a semi-distributed hydrological model called SLURP to simulate the streamflows associated with other water resources for the condition of $2CO_2$. This approach is applied to the Yongdam dam basin in southern part of Korea. The results show that under the condition of $2CO_2$, about 7.6% of annual mean streamflow is reduced when it is compared with the observed one. And while Seasonal streamflows in the winter and autumn are increased, a streamflow in the summer is decreased. However, the seasonality of the simulated series is similar to the observed pattern.

Instrumentation and system identification of a typical school building in Istanbul

  • Bakir, Pelin Gundes
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.179-197
    • /
    • 2012
  • This study presents the findings of the structural health monitoring and the real time system identification of one of the first large scale building instrumentations in Turkey for earthquake safety. Within this context, a thorough review of steps in the instrumentation, monitoring is presented and seismic performance evaluation of structures using both nonlinear pushover and nonlinear dynamic time history analysis is carried out. The sensor locations are determined using the optimal sensor placement techniques used in NASA for on orbit modal identification of large space structures. System identification is carried out via the stochastic subspace technique. The results of the study show that under ambient vibrations, stocky buildings can be substantially stiffer than what is predicted by the finite element models due to the presence of a large number of partitioning walls. However, in a severe earthquake, it will not be safe to rely on this resistance due to the fact that once the partitioning walls crack, the bare frame contributes to the lateral stiffness of the building alone. Consequently, the periods obtained from system identification will be closer to those obtained from the FE analysis. A technique to control the validity of the proportional damping assumption is employed that checks the presence of phase difference in displacements of different stories obtained from band pass filtered records and it is confirmed that the "proportional damping assumption" is valid for this structure. Two different techniques are implemented for identifying the influence of the soil structure interaction. The first technique uses the transfer function between the roof and the basement in both directions. The second technique uses a pre-whitening filter on the data obtained from both the basement and the roof. Subsequently the impulse response function is computed from the scaled cross correlation between the input and the output. The overall results showed that the structure will satisfy the life safety performance level in a future earthquake but some soil structure interaction effects should be expected in the North South direction.

A Synchronized Job Assignment Model for Manual Assembly Lines Using Multi-Objective Simulation Integrated Hybrid Genetic Algorithm (MO-SHGA) (다목적 시뮬레이션 통합 하이브리드 유전자 알고리즘을 사용한 수동 조립라인의 동기 작업 모델)

  • Imran, Muhammad;Kang, Changwook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.211-220
    • /
    • 2017
  • The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.

A Stochastic Bilevel Scheduling Model for the Determination of the Load Shifting and Curtailment in Demand Response Programs

  • Rad, Ali Shayegan;Zangeneh, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1069-1078
    • /
    • 2018
  • Demand response (DR) programs give opportunity to consumers to manage their electricity bills. Besides, distribution system operator (DSO) is interested in using DR programs to obtain technical and economic benefits for distribution network. Since small consumers have difficulties to individually take part in the electricity market, an entity named demand response provider (DRP) has been recently defined to aggregate the DR of small consumers. However, implementing DR programs face challenges to fairly allocate benefits and payments between DRP and DSO. This paper presents a procedure for modeling the interaction between DRP and DSO based on a bilevel programming model. Both DSO and DRP behave from their own viewpoint with different objective functions. On the one hand, DRP bids the potential of DR programs, which are load shifting and load curtailment, to maximize its expected profit and on the other hand, DSO purchases electric power from either the electricity market or DRP to supply its consumers by minimizing its overall cost. In the proposed bilevel programming approach, the upper level problem represents the DRP decisions, while the lower level problem represents the DSO behavior. The obtained bilevel programming problem (BPP) is converted into a single level optimizing problem using its Karush-Kuhn-Tucker (KKT) optimality conditions. Furthermore, point estimate method (PEM) is employed to model the uncertainties of the power demands and the electricity market prices. The efficiency of the presented model is verified through the case studies and analysis of the obtained results.

Blind Adaptive Receiver based on Constant Modulus for Downlink MC-CDMA Systems (하향링크 MC-CDMA 시스템을 위한 CM 기반의 블라인드 적응 수신기)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.47-54
    • /
    • 2019
  • In this paper, we consider a constant modulus (CM) based blind adaptive receiver design for downlink multi-carrier code-division multiple access (MC-CDMA) systems employing simple space-time block coding (STBC). In the paper, filter weight vectors used for the detection of the transmitted symbols are partitioned into its subvectors and then, special relations among the optimal subvectors minimizing the CM metric are derived. Using the special relations, we present a modified CM metric and propose a new blind adaptive stochastic-gradient CM algorithm (SG-CMA) by minimizing the modified CM metric. The proposed blind adaptive SG-CMA has faster convergence rate than the conventional SG-CMA because the filter weight vectors of the proposed scheme are updated in the region of satisfying the derived special relations. Computer simulation results are given to verify the superiority of the proposed SG-CMA.

Harmonic Estimation of Power Signal Based on Time-varying Optimal Finite Impulse Response Filter (시변 최적 유한 임펄스 응답 필터 기반 전력 신호 고조파 검출)

  • Kwon, Bo-Kyu
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.97-103
    • /
    • 2018
  • In this paper, the estimation method for the power signal harmonics is proposed by using the time-varying optimal finite impulse response (FIR) filter. To estimate the magnitude and phase-angle of the harmonic components, the time-varying optimal FIR filter is designed for the state space representation of the noisy power signal which the magnitude and phase is considered as a stochastic process. Since the time-varying optimal FIR filter used in the proposed method does not use any priori information of the initial condition and has FIR structure, the proposed method could overcome the demerits of Kalman filter based method such as poor estimation and divergence problem. Due to the FIR structure, the proposed method is more robust against to the model uncertainty than the Kalman filter. Moreover, the proposed method gives more general solution than the time-invariant optimal FIR filter based harmonic estimation method. To verify the performance and robustness of the proposed method, the proposed method is compared with time-varying Kalman filter based method through simulation.

Research on China's Internet Financial Risk Supervision and Countermeasures (중국 인터넷 금융 리스크 관리 및 대책 연구)

  • Yuan, Zhao;Sim, Jae-Yeon
    • Industry Promotion Research
    • /
    • v.7 no.4
    • /
    • pp.109-119
    • /
    • 2022
  • In recent years, China's Internet finance industry is hot. There is no doubt that Internet finance has been fully integrated into China, forming a new form of financing, and rapidly becoming a new channel for investment and financing in China, shouldering the responsibility of inclusive financing and building China's real economy. However, with investment, there are risks. Based on the panel data of China's Internet financial platform, this paper uses the random effect model to study the influencing factors of Internet financial risks, and draws three conclusions: (1) The user funds and platform funds of the financial platform will be managed separately by the bank, which can effectively reduce the risk of financial transactions on the Internet; (2) The risk of Internet financial transactions can be effectively reduced by avoiding the concentration of platform funds in the hands of a few borrowers through regulatory policies; (3) The liquidity control of funds effectively reduces the risk of Internet financial transactions. Based on the conclusions, we propose optimization strategies for regulatory policies to achieve the healthy and sustainable development of Internet finance.

Partial Budget Modeling of Economic Losses of Aujeszky's Disease (부분예산분석을 이용한 오제스키병 발생 농가의 경제적 손실 추정)

  • Pak, Son-Il;Park, Choi-Kyu;Moon, Oun-Kyong;Yoon, Hachung;Lee, Byeong-Yong;Lee, Sang-Jin
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • Aujeszky's disease (AD) is a respiratory, infectious viral illness associated with high mortality, especially in neonatal piglets and has frequently been considered an economically important disease in many endemic countries. Although AD is still occurring in a geographically defined region in Korea, little attention has been paid to the economics of AD. In this study, partial budget technique was used to develop a simulation model to measure financial losses following the disease epidemic in a swine operation utilizing stochastic or deterministic parameters from the literatures and the index case herd of AD occurred in 2005, where available and applicable. For the infected case herd with a 12500-pig, the total economic loss for this operation was estimated to be about 199 million Korean won (95% confidence interval [CI] 148,645,000-250,741,000). Given net loss due to death of a pig at sow level was 119,000 won, total loss for the case herd with 1200 sows accounted for 143 million won (95% CI 92,599,000-193,729,000). The net loss of the death of one pig at growing and fattening level resulted in loss of 46,000 won (95% CI 40,000-53,000) and 126,000 won (95% CI 122,000-131,000), respectively. Taking into account for the number of pigs raised in the case herd, total loss amounted to 8 million won (95% CI 7,167,000-9,347,000) and 12 million won (95% CI 11,959,000-12,891,000), for growers and fatteners, respectively, assuming 63% of saved feed intake when a pig dies halfway through the respective period. Under the model's assumptions, suckling pig mortality was the major factors of loss in estimating the economic consequences (approximately 71.8% of the total loss). The high economic losses of a herd infected with AD suggest that the effective and region-specific control measures should be implemented in disease endemic foci.

Robust Design Method for Complex Stochastic Inventory Model

  • Hwang, In-Keuk;Park, Dong-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1999.04a
    • /
    • pp.426-426
    • /
    • 1999
  • ;There are many sources of uncertainty in a typical production and inventory system. There is uncertainty as to how many items customers will demand during the next day, week, month, or year. There is uncertainty about delivery times of the product. Uncertainty exacts a toll from management in a variety of ways. A spurt in a demand or a delay in production may lead to stockouts, with the potential for lost revenue and customer dissatisfaction. Firms typically hold inventory to provide protection against uncertainty. A cushion of inventory on hand allows management to face unexpected demands or delays in delivery with a reduced chance of incurring a stockout. The proposed strategies are used for the design of a probabilistic inventory system. In the traditional approach to the design of an inventory system, the goal is to find the best setting of various inventory control policy parameters such as the re-order level, review period, order quantity, etc. which would minimize the total inventory cost. The goals of the analysis need to be defined, so that robustness becomes an important design criterion. Moreover, one has to conceptualize and identify appropriate noise variables. There are two main goals for the inventory policy design. One is to minimize the average inventory cost and the stockouts. The other is to the variability for the average inventory cost and the stockouts The total average inventory cost is the sum of three components: the ordering cost, the holding cost, and the shortage costs. The shortage costs include the cost of the lost sales, cost of loss of goodwill, cost of customer dissatisfaction, etc. The noise factors for this design problem are identified to be: the mean demand rate and the mean lead time. Both the demand and the lead time are assumed to be normal random variables. Thus robustness for this inventory system is interpreted as insensitivity of the average inventory cost and the stockout to uncontrollable fluctuations in the mean demand rate and mean lead time. To make this inventory system for robustness, the concept of utility theory will be used. Utility theory is an analytical method for making a decision concerning an action to take, given a set of multiple criteria upon which the decision is to be based. Utility theory is appropriate for design having different scale such as demand rate and lead time since utility theory represents different scale across decision making attributes with zero to one ranks, higher preference modeled with a higher rank. Using utility theory, three design strategies, such as distance strategy, response strategy, and priority-based strategy. for the robust inventory system will be developed.loped.

  • PDF