• 제목/요약/키워드: stochastic approximation Monte Carlo(SAMC)

검색결과 2건 처리시간 0.017초

Approximating Exact Test of Mutual Independence in Multiway Contingency Tables via Stochastic Approximation Monte Carlo

  • Cheon, Soo-Young
    • 응용통계연구
    • /
    • 제25권5호
    • /
    • pp.837-846
    • /
    • 2012
  • Monte Carlo methods have been used in exact inference for contingency tables for a long time; however, they suffer from ergodicity and the ability to achieve a desired proportion of valid tables. In this paper, we apply the stochastic approximation Monte Carlo(SAMC; Liang et al., 2007) algorithm, as an adaptive Markov chain Monte Carlo, to the exact test of mutual independence in a multiway contingency table. The performance of SAMC has been investigated on real datasets compared to with existing Markov chain Monte Carlo methods. The numerical results are in favor of the new method in terms of the quality of estimates.

Multiple Change-Point Estimation of Air Pollution Mean Vectors

  • Kim, Jae-Hee;Cheon, Sooy-Oung
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.687-695
    • /
    • 2009
  • The Bayesian multiple change-point estimation has been applied to the daily means of ozone and PM10 data in Seoul for the period 1999. We focus on the detection of multiple change-points in the ozone and PM10 bivariate vectors by evaluating the posterior probabilities and Bayesian information criterion(BIC) using the stochastic approximation Monte Carlo(SAMC) algorithm. The result gives 5 change-points of mean vectors of ozone and PM10, which are related with the seasonal characteristics.