• Title/Summary/Keyword: stochastic approach

Search Result 583, Processing Time 0.024 seconds

Study of combinations of site operating states for multi-unit PSA

  • Yoo, Heejong;Jin, Kyungho;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3247-3255
    • /
    • 2021
  • As Probabilistic Safety Assessments (PSAs) are thoroughly conducted for the Site Operating States (SOSs) for a single unit, multi-unit Probabilistic Safety Assessments (MUPSAs) are ongoing worldwide to address new technical challenges or issues. In South Korea, the determination of the site operating states for a single site requires a logical approach with reasonable assumptions due to the fact that there are 4-8 operating units for each site. This paper suggests a simulation model that gives a reasonable expectation of the site operation states using the Monte-Carlo method as a stochastic approach and deterministic aspects such as operational policies. Statistical hypothesis tests were conducted so that the reliance of the simulation results can be guaranteed. In this study, 7 units of the Kori site were analysed as a case study. The result shows that the fraction of full power for all 7 units is nearly 0.45. For situations when more than two units are not in operation, the highest fraction combination was obtained for Plant Operation State (POS) 8, which is the stage of inspection and repairment. By entering various site operation scenarios, the simulation model can be used for the analysis of other site operation states.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.

ASUSD nuclear data sensitivity and uncertainty program package: Validation on fusion and fission benchmark experiments

  • Kos, Bor;Cufar, Aljaz;Kodeli, Ivan A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2151-2161
    • /
    • 2021
  • Nuclear data (ND) sensitivity and uncertainty (S/U) quantification in shielding applications is performed using deterministic and probabilistic approaches. In this paper the validation of the newly developed deterministic program package ASUSD (ADVANTG + SUSD3D) is presented. ASUSD was developed with the aim of automating the process of ND S/U while retaining the computational efficiency of the deterministic approach to ND S/U analysis. The paper includes a detailed description of each of the programs contained within ASUSD, the computational workflow and validation results. ASUSD was validated on two shielding benchmark experiments from the Shielding Integral Benchmark Archive and Database (SINBAD) - the fission relevant ASPIS Iron 88 experiment and the fusion relevant Frascati Neutron Generator (FNG) Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM) mock-up experiment. The validation process was performed in two stages. Firstly, the Denovo discrete ordinates transport solver was validated as a standalone solver. Secondly, the ASUSD program package as a whole was validated as a ND S/U analysis tool. Both stages of the validation process yielded excellent results, with a maximum difference of 17% in final uncertainties due to ND between ASUSD and the stochastic ND S/U approach. Based on these results, ASUSD has proven to be a user friendly and computationally efficient tool for deterministic ND S/U analysis of shielding geometries.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

A Conceptual Approach for Discovering Proportions of Disjunctive Routing Patterns in a Business Process Model

  • Kim, Kyoungsook;Yeon, Moonsuk;Jeong, Byeongsoo;Kim, Kwanghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1148-1161
    • /
    • 2017
  • The success of a business process management system stands or falls on the quality of the business processes. Many experiments therefore have been devoting considerable attention to the modeling and analysis of business processes in process-centered organizations. One of those experiments is to apply the probabilistic theories to the analytical evaluations of business process models in order to improve their qualities. In this paper, we excogitate a conceptual way of applying a probability theory of proportions into modeling business processes. There are three types of routing patterns such as sequential, disjunctive, conjunctive and iterative routing patterns in modeling business processes, into which the proportion theory is applicable. This paper focuses on applying the proportion theory to the disjunctive routing patterns, in particular, and formally named proportional information control net that is the formal representation of a corresponding business process model. In this paper, we propose a conceptual approach to discover a proportional information control net from the enactment event histories of the corresponding business process, and describe the details of a series of procedural frameworks and operational mechanisms formally and graphically supporting the proposed approach. We strongly believe that the conceptual approach with the proportional information control net ought to be very useful to improve the quality of business processes by adapting to the reengineering and redesigning the corresponding business processes.

An Inventory Problem with Lead Time Proportional to Lot Size and Space Constraint (로트크기에 비례하는 리드타임과 공간 제약을 고려한 재고관리 정책)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.109-116
    • /
    • 2015
  • This paper is concerned with the single vendor single buyer integrated production inventory problem. To make this problem more practical, space restriction and lead time proportional to lot size are considered. Since the space for the inventory is limited in most practical inventory system, the space restriction for the inventory of a vendor and a buyer is considered. As product's quantity to be manufactured by the vendor is increased, the lead time for the order is usually increased. Therefore, lead time for the product is proportional to the order quantity by the buyer. Demand is assumed to be stochastic and the continuous review inventory policy is used by the buyer. If the buyer places an order, then the vendor will start to manufacture products and the products will be transferred to the buyer with equal shipments many times. The mathematical formulation with space restriction for the inventory of a vendor and a buyer is suggested in this paper. This problem is constrained nonlinear integer programming problem. Order quantity, reorder points for the buyer, and the number of shipments are required to be determined. A Lagrangian relaxation approach, a popular solution method for constrained problem, is developed to find lower bound of this problem. Since a Lagrangian relaxation approach cannot guarantee the feasible solution, the solution method based on the Lagrangian relaxation approach is proposed to provide with a good feasible solution. Total costs by the proposed method are pretty close to those by the Lagrangian relaxation approach. Sensitivity analysis for space restriction for the vendor and the buyer is done to figure out the relationships between parameters.

An Analysis of Stochastic Network${\cdot}$Using Q-GERT (Q-GERT를 이용한 확률적 네트워크의 분석)

  • Kang, Suk-Ho;Kim, Won-Kyung
    • Journal of the military operations research society of Korea
    • /
    • v.5 no.1
    • /
    • pp.155-162
    • /
    • 1979
  • GERT modeling is in a dynamic stage of development. One of the most exciting and useful new developments in GERT modeling and Simulation is the modeling technology and computer package called Q-GERT. As the name implies, this provides the capability to analyze complex networks of queueing systems. The modeling approach is quite similar to GERT, but includes queue nodes called 'Select' nodes, which allow a considerable amount of logic to be included in the analysis of complex networks of multichannel, multiphase queueing systems should find the Q-OERT package of considerable interest.

  • PDF