• Title/Summary/Keyword: sting support

Search Result 7, Processing Time 0.03 seconds

Study on Model Support Interference of the Scaled NASA Common Research Model in Small Low Speed Wind Tunnel (소형 저속 풍동에서 NASA 표준 연구 모형의 모형지지부 효과 연구)

  • Kim, Namgyun;Cho, Cheolyoung;Ko, Sungho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.56-64
    • /
    • 2020
  • A wind tunnel test of 29.7% scaled model of NASA Common Research Model was performed in small low speed wind tunnel. The wind tunnel model was fabricated in Aluminium in consultation with NASA Langley Research Center and AIAA Drag Prediction Workshop committee members. The static aerodynamic forces and moments were measured at a relatively low Reynolds number of 0.3 × 106 due to tunnel capability limitations. Pitching moment of three types of model support(Fin sting, Blade sting and Belly sting) were compared. The pitching moment for corrected Belly sting and Fin sting were similar. The result of pitching moment for Blade sting was very small.

The correction of support interference effect of belly sting (벨리 스팅 모형 지지부의 간섭 효과 보정기법 연구)

  • Kim, Nam-Gyun;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.30-36
    • /
    • 2002
  • Wind tunnel model has some difference in shape compared to the real flight vehicle because of model support system for testing. The support system can make some differences in the measured forces and moments to the flight test data. There are several correction methods involved such as cavity pressure correction and model support interference. Internal balance and belly sting support were used for this wind tunnel test and three types of model support correction methods, variable sting thickness method, dummy sting method, and wire support method, were compared. Variable sting thickness method is well matched with wire support method, which is known for almost interference free.

Belly Sting Model Support Interference Effect of NASA Common Research Model at Low Speed Wind Tunnel (저속 풍동시험 시 NASA Common Research Model의 Belly Sting 모형 지지부에 의한 간섭효과에 관한 연구)

  • Cha, Kyunghwan;Kim, Namgyun;Ko, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Computational Fluid Dynamics (CFD) was performed under low-speed wind tunnel test conditions using a 29.7% scale model of the NASA common research model. A wind tunnel test was conducted to measure the aerodynamic coefficient of the CRM with Belly sting model support configuration at a low Reynolds number of 0.3×106 and it was compared with the aerodynamic coefficient of CFD analysis. In order to verify the validation of the analysis, a computational analysis under the conditions of the advance research was performed and compared. The interference effect of the Belly sting model support affected not only the fuselage but also the main and tail wings.

Study for Reducing the Near Field Interference of Belly Sting Model Support with Fairing (페어링을 이용한 벨리 스팅 모형지지부의 직접 간섭효과 감소방안 연구)

  • Kim, Namgyun;Lee, Jaeho;Cha, Kyunghwan;Ko, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.753-763
    • /
    • 2020
  • A wind tunnel test of 29.7% scaled model of NASA Common Research Model with belly model support was performed in small low speed wind tunnel. The static aerodynamic forces and moments of CRM were measured with belly sting support configuration. Pitching moments of belly sting with various fairings were compared and small interference fairing shape was found. The belly sting model support interference and reducing effect of fairing shapes with CFD analysis.

A STUDY ON THE PREDICTION OF THE BASE FLOW CHARACTERISTICS OF A LAUNCH VEHICLE USING CFD

  • Kim Younghoon;Ok Honam;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.258-261
    • /
    • 2004
  • Numerical simulations are made to predict the axial force coefficients of a two-stage launch vehicle, and the results are compared with those by wind tunnel tests. It is found that the forebody axial force is not affected by whether the base of the body is modeled or not. Modeling the sting support used in wind tunnel tests reduced the base axial force compared to the results without it. The present calculation shows that the forebody axial forces are underestimated while the base axial forces are overestimated. The total axial force, therefore, compares with the experimental data with better accuracy by cancelling out the errors of opposite signs. Modeling of the sting support in numerical simulations is found to be necessary to get a better agreement with the experiments for both base and overall axial force coefficients.

  • PDF

A Study on the Influence of the Base Region Modeling on the Aerodynamic Characteristics of a Launch Vehicle Using CFD (CFD에 의한 발사체 공력특성에 미치는 기저부 영역 모델링의 영향에 관한 연구)

  • Kim, Young-Hoon;Ok, Ho-Nam;Kim, In-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.27-33
    • /
    • 2005
  • This research presents the influence of the base region modeling on the aerodynamic characteristics of a launch vehicle using CFD. The vicinity of a launch vehicle is divided into four zones, and four computational cases are made using these four zones. The aerodynamic coefficients are predicted for the angle-of-attack of 6 degrees and Mach numbers ranging from 0.4 to 2.86. It was found that modeling of the base region should not be neglected for the prediction of the aerodynamic characteristics of a launch vehicle in subsonic and transonic regions. It was also found that the modeling of the sting support used in the wind tunnel test is necessary to get a better agreement with the experiments.

A Study on the Prediction of the Aerodynamic Characteristics of a Launch Vehicle Using CFD (전산유동해석에 의한 발사체 공력 특성 예측에 관한 연구)

  • Kim Younghoon;Ok Honam;Kim Insun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.17-22
    • /
    • 2004
  • A space launch vehicle departs the ground in a low speed, soon reaches a transonic and a supersonic speed, and then flies in a hypersonic speed into the space. Therefore, the design of a launch vehicle should include the prediction of aerodynamic characteristics for all speed regimes, ranging from subsonic to hypersonic speed. Generally, Empirical and analytical methods and wind tunnel tests are used for the prediction of aerodynamic characteristics. This research presents considerable factors for aerodynamic analysis of a launch vehicle using CFD. This investigation was conducted to determine effects of wake over the base section on the aerodynamic characteristics of a launch vehicle and also performed to determine effects of the sting which exist to support wind tunnel test model.

  • PDF