• Title/Summary/Keyword: stiffness value

Search Result 609, Processing Time 0.033 seconds

A Numerical Study to Estimate the Lateral Responses of Steel Moment Frames Using Strain Data (변형률 데이터를 이용한 철골모멘트골조의 횡응답 예측을 위한 해석적 연구)

  • Kim, Si-Jun;Choi, Se-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.113-119
    • /
    • 2016
  • In this study, the method to predict the lateral response by using strain data is presented on the steel moment frame. For this, the reliability of the proposed method by applying the example of five-story frame structure were verified. Using the strain value of columns, it predicted the lateral response of structure. It is assumed that all of four strain sensors for one column set up and the strain responses of both end of the column are utilized. The lateral response of member is calculated by using the slope deflection method. Also, using the acceleration response of the one layer, the stiffness of the rotation spring located in the supporting point is predicted. As a result, it was effective to understand the lateral displacement and acceleration responses and to predict local damage and location.

Comparison of Physical Properties of Medical Compression Stocking Materials (의료용 압박스타킹 소재의 제조국 별 물리적 특성 비교)

  • Do, Wolhee;Kim, Namsoon
    • The Korean Fashion and Textile Research Journal
    • /
    • v.19 no.6
    • /
    • pp.759-767
    • /
    • 2017
  • This study investigates the improvement of domestic compression stockings by comparing and analyzing the characteristics of materials and fabrics of medical compression stockings developed in Korea and domestic imported compression stockings. Among imported compression stockings currently available in Korea, three brands with high sales rates are selected by countries (USA, Italy, and Germany) to measure the physical and mechanical properties of the material. Medical compression stockings to be analyzed were selected as M size pantyhose included in 20-30mmHg. As a result, the tensile elongation of medical compression stockings selected in this study was the highest in Korean products in the ankle, while the highest in the US was in the thigh, and the elasticity of Italian products was low. The recovery rate of the kidneys was similar for all four ankles. The ankle weight was the highest except for Korean products that showed the highest weight of the thigh and difference from products of other countries. US product also showed high shape stability due to high recovery of tensile strength from high value RT. Italian products showed low banding and shear values; however, shape stability was poor with good drapeability. In Germany, LT and RT values were low, but clothing comfort was considered excellent. In Korea, LT and RT values, banding and shear characteristics were high, and drapeability was poor. Stiffness was good, but recoverability was excellent.

Study on Fastened Properties by Applied to CFRP Laminates of Subminiature Screw (초소형나사의 CFRP 적층판 적용에 따른 체결특성에 관한 연구)

  • Choi, Byung Hui;Kim, Ho Joong;Kim, Ji Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1239-1243
    • /
    • 2014
  • This paper presents the application of carbon-fiber-reinforced polymer (CFRP) for the damage absorption and optimal design of portable smart devices to close in life. CFRP specimens are subjected to a tensile test to estimate their mechanical properties in terms of the stacking angles. Further, the screw reverse torque and screw torque at each stacking angle are determined using a torque tester after tapping holes on the CFRP specimens. Two experiments are performed for comparing their results in order to determine optimal conditions. In the tensile test, a woven specimen is found to have the highest strength and stiffness. In the case of the woven specimen, no difference is observed even when it is applied to prevent loosening of the coating. And average result value was excellent.

A Study on the Handle of Cotton Fabric treated with Chitosan Polyurethane Mixed Solution by KES (I) (키토산-폴리우레탄 혼합용액(混合溶液)으로 처리(處理)된 면직물(綿織物)의 KES에 의한 태분석(態分析) (I))

  • Yoon, Se-Hee;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.8 no.1
    • /
    • pp.141-155
    • /
    • 2004
  • Chitosan, the natural biodegradable polymer derived from chitin by de- acetylation, has been widely applied to the textile finishing processes for excellent anti-microbial characteristic and handle improvement of fabric. The purpose of this study is to investigate the change of handle when cotton fabric is treated with chitosan-polyurethane mixed solution. The viscosity values of chitosan solutions were 8cps and 50cps, and the wet-pick-up% was maintained at 90%. In case of mixing with water soluble polyurethane, the mixture ratio of chitosan and polyurethane was settled on the solid content ratio of 1:0, 1:0.5, 1:1, 1:2. Also the change of physical properties by neutralization in NaOH solution was studied. The results can be summarized up as follows : 1. Extensibility(EM) and tensile energy(WT) of cotton fabric treated with chitosan are decreased, but bending rigidity(B) is remarkably increased. With the addition of polyurethane, the decrease of EM and WT is weakened and the increase of B is weakened. The case of neutralization is similar to the case of polyurethane addition. 2. By treating fabric with chitosan, FUKURAMI(Fullness and softness) is decreased, but KOSHI(Stiffness), SHARI(Crispness), HARI(Anti-drape Stiff ness) are increased. With the addition of polyurethane, the decrease of FUKURAMI is diminished and the increase of KOSHI, SHARI, HARI are diminished. 3. As the viscosity of chitosan solution increased, the air permeability value increased. The addition of polyurethane decreased the air permeability.

Hook Plate Fixation for Isolated Greater Tuberosity Fractures of the Humerus

  • Lee, Kyoung-Rak;Bae, Ki-Cheor;Yon, Chang-Jin;Cho, Chul-Hyun
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.4
    • /
    • pp.222-229
    • /
    • 2017
  • Background: The purpose of this study was to investigate the outcomes after fixation using a 3.5-mm locking compression plate (LCP) hook plate for isolated greater tuberosity (GT) fractures of the proximal humerus. Methods: We evaluated the postoperative radiological and clinical outcomes in nine patients who were followed up at least 1 year with isolated GT fractures. Using the deltopectoral approach, we fixed the displaced GT fragments with a 3.5-mm LCP hook plate (Synthes, West Chester, PA, USA). Depending on the fracture patterns, the hook plate was fixed with or without augmentation using either tension suture or suture anchor fixation. Results: All the patient showed successful bone union. The mean time-to-union was 11 weeks. The radiological and clinical outcomes at the final follow-up were generally satisfactory. The mean visual analogue scale for pain, the University of California at Los Angeles score, the American Shoulder and Elbow Surgeons score, and the subjective shoulder value were 1.4, 30.3, 84.3, and 82.2%, respectively. The mean active forward flexion, abduction, external rotation, and internal rotation of the shoulder were $156.7^{\circ}$, $152.2^{\circ}$, $61.1^{\circ}$, and the 10th thoracic vertebral level, respectively. Only one patient presented with a postoperative complication of shoulder stiffness. The patient was treated through arthroscopic capsular release on the 5th postoperative month. Conclusions: We conclude that fixation using 3.5-mm LCP hook plates for isolated GT fractures of the proximal humerus is a useful treatment method that provides satisfactory clinical and radiological outcomes.

Stress-Strain Behavior of Flexible Pavement Reinforced with Geosynthetics (토목섬유로 보강된 아스팔트포장의 응력-변형 거동특성)

  • Ahn, Tae-Bong;Yang, Sung-Chul;Cho, Sam-Deok;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.151-163
    • /
    • 2001
  • Very few studies have been attempted to understand the stress-strain behavior of flexible pavements reinforced with geosynthetics in the middle of asphalt layer. In this study, the flexible asphalt layer was analyzed with finite element method to understand stress-strain behavior. The asphalt layer was reinforced with glass grid and geogrid. The reinforcement was applied in the asphalt layer to prevent its excessive deformation and shear failure. The location of installation and stiffness of the geosynthetics were varied to obtain optimum depth of reinforcement and proper modulus. The results indicate that geosynthetics are more effective for reducing maximum shear stress than those of vertical stress and vertical displacement. Maximum shear stress decreased 15$\sim$20%, and glass grid with high value of modulus was the most effective. Also, in order to prevent failure of asphalt layer, reinforcement should be installed in the 3cm$\sim$5cm depth.

  • PDF

Experimental Investigation of the Flexural Behavior of Polymer-modified Lightweight Aggregate Concrete One-Way Members (폴리머 개질 경량콘크리트 일방향 부재의 휨 거동에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.551-557
    • /
    • 2010
  • The purpose of this study is to estimate experimentally the flexural behavior, capacity and validity of existing regulation of net tensile strain in lightweight concrete beams and polymer modified lightweight concrete beams. One normal weight concrete beam and four lightweight concrete beams, three polymer modified lightweight concrete beams were constructed as same figure and attempted to evaluate the difference of strength and ductility in specimens of different net tensile strain in extreme tension steel. Test results are indicated in terms of load-deflection behavior and ductility index. As the value of net tensile strain increased, the flexural strength and stiffness of specimen decreased but ductility index increased in both of lightweight concrete beams and polymer modified lightweight concrete beams. It is considered that to achieve similar ductility index of normal weight concrete, net tensile strain in extreme tension steel should exceed 0.005 for lightweight concrete beam and polymer modified lightweight concrete beam.

The Effect of Cold Air Therapy in Release of Inflammation on Rheumatoid Arthritis (류머티스 관절염 환자에게 한랭치료가 염증완화에 미치는 효과)

  • Nam, Ki-San;Han, Kyoung-Ju;Lee, In-Hak;Moon, Sung-Ki
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.5 no.2
    • /
    • pp.85-93
    • /
    • 2007
  • Summary of background data: It is researched until now and the researches against the effect of position cold treatment the effect which pain threshold, change of skin temperature, researches the effective stiffness, the coldness in the patient it applied and relax an inflammation do the researches against were insufficient. Purpose: This project was to see how much it gives effect by using the cold air therapy an inflammation relief of rheumatoid arthritis patient. Methods: The medical subjects were 10 people from standard to diagnosis category of American College of Rheumatology(ACR) who had rheumatoid arthritis and to inspect informations about inflammation relief, have inspected ESR(erythrocyte sedimentation rate) and WBC(white blood cells). The experiment method was to let the patient bend the joint and lay down flat and treat with cold air from 10 cm away from joint line repeating 5 minutes treatment 1 minute rest and 3 minutes treatment. ESR and WBC cold air therapy reported with 5 days gap and each patient has been applied for 3 times. Result: The 5th day and 10th days ESR and WBC value shows when using cold air therapy, there was a reduction on rejected group but didn't last long, but 15th day it showed only on WBC it had its attention. Conclusions: So the cold air therapy shows it has positive effects on inflammation relief of rheumatoid arthritis patient.

  • PDF

Evaluation of Tailorability and Mechanical Properties of Stretch Fabrics (스트레치 직물의 역학적 특성 및 봉제성능 평가)

  • Lee, Hwan-Deok;Sung, Su-Kwang;Kwon, Hyun-Sun
    • The Korean Fashion and Textile Research Journal
    • /
    • v.2 no.2
    • /
    • pp.150-158
    • /
    • 2000
  • This study investigated mechanical properties, drape coefficients and node indices of stretch fabrics. We applied mechanical properties to exhibited tailorability control in HESC and evaluated making-up. The mechanical properties such as tensile, bending, shearing, compression, surface characteristic values, thickness and weight were measured by the KES-F system and drape coefficient by drape tester. The summarized results of this study were as follows; First, stretch fabrics, almost, shown high stretch in weft inserted polyurethane yarn fabric and had a ${\pm}2{\sigma}$(sigma) range of shearing, compression, surface and thickness, except bending and weight, as compared with Japanese women's thin dress fabrics. Second, bending had a positive correlation in stiffness, anti-drape and flexibility & softness. Shearing had a negative correlation in crispness and scroop. Surface properties had a high contribution in fullness & softness. Third, The drape coefficient was found by measuring the mechanical properties according to the obtained regression equation. Forth, many problems are expected in overfeed and cutting operations in sewing process. In the decision of the good external appearance using TVA, only 26 of 55 samples are included in the range of the good external appearance. Fifth, in the regard of the result for sewing control, warp values are not necessary to control in the all kind of items. But weft value in the RT and EM are out of non-control zone. So we need a special management during sewing process.

  • PDF

Simplified Load Distribution Factor Equation for the Design of Composite Steel Girder Bridges (강합성교 설계를 위한 하중분배계수 간략식)

  • Chung, Wonseok
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.131-138
    • /
    • 2005
  • The AASHTO wheel load distribution factor (LDF) equation has been with us since 1931 and has undergone minor modifications. In 1994, an entirely new procedure was introduced in the AASHTO LRFD code based on parametric studies and finite element analyses. However, this LDF equation involves a longitudinal stiffness parameter, the design of which is not initially known. Thus, an iterative procedure is required to correctly determine the LDF value. The increased level of complexity puts undue burden on the designer resulting in a higher likelihood for misinterpretation and error. In this study, based on current AASHTO LRFD framework, a new simplified equation is developed that does not require an iterative procedure. A total of 43 representative composite steel girder bridges are selected and analyzed using a finite element model.The new simplified equation produces LDF values that are always conservative when compared to those obtained from the finite element analyses and are generally greater than the LDF obtained using AASHTO LRFD specification. Therefore, the proposed simplified equation is expected to streamline the determination of LDF for bridge design without sacrificing safety.