• Title/Summary/Keyword: stiffness ratio

Search Result 1,464, Processing Time 0.027 seconds

Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings

  • Xue, Jianyang;Zhou, Chaofeng;Lin, Jianpeng
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.451-464
    • /
    • 2018
  • This paper presents some quasi-static tests for 4 mixed columns composed of CFST column and RC column. The seismic performance and failure mode were studied under low-cyclic revised loading. The failure mode was observed under different axial compression ratios. The hysteretic curve and skeleton curve were obtained. The effects of axial compression ratio on yield mechanism, displacement ductility, energy dissipation, stiffness and strength attenuation were analyzed. The results indicate that the failure behavior of CFST-RC mixed column with archaized style is mainly caused by bending failure and accompanied by some shear failure. The axial compression ratio performs a control function on the yielding order of the upper and lower columns. The yielding mechanism has a great influence on the ductility and energy dissipation capacity of specimens. Based on the experiment, finite element analysis was made to further research the seismic performance by ABAQUS software. The variable parameters were stiffness ratio of upper and lower columns, axial compression ratio, yielding strength of steel tube, concrete strength and rebar ratio. The simulation results show that with the increase of stiffness ratio of the upper and lower columns, the bearing capacity and ductility of specimens can correspondingly increase. As the axial compression ratio increases, the ductility of the specimen decreases gradually. The other three parameters both have positive effect on the bearing capacity but have negative effect on the ductility. The results can provide reference for the design and engineering application of mixed column consisted of CFST-RC in Chinese archaized buildings.

Structural Stiffness Estimation and Optimum Sensor location for Structural Damage Detection (구조물의 손상 탐지를 위한 시스템 축소 및 주자유도 선정과 강성도 평가)

  • Lee Sook;Woo Kyeong-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.672-679
    • /
    • 2005
  • Damage detection is a very active research field, in which significant efforts have been invested in recent years. In this paper, analysis using structural stiffness estimation for damage detection is presented and compared to other methodologies. By using a cantilever analytical beam model, it is shown here that not only location but also the amount of damage in structure can be predicted from the ratio of change in stiffness. Damage detection experiment in real beam specimen on is also peformed and the results are compared.

  • PDF

Design of Seismic Isolated Tall Building with High Aspect-Ratio

  • Kikuchi, Takeshi;Takeuchi, Toru;Fujimori, Satoru;Wada, Akira
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • When seismic isolation system is applied to high aspect-ratio (height/wide-ratio) steel structures, there are several problems to be taken into consideration. One is lifting up tensile force on the isolation bearing by overturning moment caused by earthquake. Another is securing building stiffness to produce seismic isolation effects. Under these conditions, this paper reports the structural design of high-rise research building in the campus of Tokyo Institute of Technology. With the stepping-up system for the corner bearings, the narrow sides of single span framework are designed to concentrate the dead load as counter-weight for the tensile reaction under earthquake. Also we adopted concrete in-filled steel column and Mega-Bracing system covering four layers on north & south framework to secure the horizontal stiffness of the building.

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.

Investigation on the Design of SRC Composite Columns (SRC 합성교각의 설계에 대한 고찰)

  • Shim, Chang-Su;Chung, Young-Soo;Min, Jin;Jung, In-Keun;Han, Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.439-442
    • /
    • 2005
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, these columns were usually utilized for building structures and had higher steel ratio for small sections. For bridge pier applications, it is necessary to design the SRC columns having low steel ratio, which is nearly the same steel ratio as the normal RC columns. In this study, the evaluation of the composite columns with a core steel in term of the stiffness and the strength was investigated using experimental results. The effects of the steel ratio was also estimated using design provisions. The calculation of steel encased composite columns with multiple steel sections were performed and compared with RC columns.

  • PDF

A Geometrical Approach to the Characteristic Analysis of Parallel Mechanism for Planar Task (평면 작업용 병렬 메카니즘의 특성 해석을 위한 기하학적 접근)

  • Song, Nak-Yoon;Cho, Hwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.158-166
    • /
    • 1998
  • This paper presents a geometrical approach to the characteristic analysis of parallel mechanism with free joints intended for use as a planar task robot. Solution of the forward and inverse kinematic problems are described. Because the mechanism has only three degree-of-freedom output, constraint equations must be generated to describe the inter-relationship between actuated joints and free joints so as to describe the position and orientation of the moving platform. Once these constraints are incorporated into the kinematics model, a constrained Jacobian matrix is obtained. and it is used for the solution of the forward kinematic equations by Newton-Raphson technique. Another Jacobian matrix was derived to describe the interrelationship between actuated joints and moving platform. The stiffness, velocity transmission ratio, force transmission ratio and dexterity of the mechanism are then determined based on this another Jacobian matrix. The geometrical construction of the mechanism for the best performance was investigated using the characteristic analysis.

  • PDF

Analysis of Behavior on GCP Composite Ground Considering Loading and Foundation Conditions (하중 및 기초조건에 따른 GCP 복합지반의 거동분석)

  • Kim, Gyeong-Eop;Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.127-137
    • /
    • 2018
  • Gravel Compaction Pile (hereinafter referred to as GCP) is a ground improvement technique by packing crushed stones on fragile clay ground, pressing it, and forming stakes on the foundation. Although many researchers have analyzed stress behavior of GCP composite ground on domestic GCP technique using laboratory experiment and field experiment, analyses of stress behavior according to the difference of stiffness of mat foundation loaded on the upper foundation of GCP composite ground have not been done actively. Therefore, this study aimed to identify the stress concentration ratio in accordance with the difference of basis stiffness by interpreting figures. To perform this, replacement ratio was changed and modelled using ABAQUS, software for finite element analysis and analyzed the stress concentration ratio, amounts of settlement, and maximum amounts of horizontal displacement of composite ground in accordance with the difference of stiffness. An analysis showed that the stress concentration ratio of rigid foundation was highly assessed than unloading of flexible foundation in case of unloading, while amounts of settlement under flexible unloading condition were slightly higher than under rigid condition. This indicates that the characteristic of stress behavior on the different stiffness of upper foundation needs to be clarified. In addition, the maximum horizontal displacement was generated in a constant level regardless of the difference of stiffness.

Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.459-480
    • /
    • 2001
  • The damage suffered by steel structures during the Northridge (1994) and Kobe (1995) earthquakes indicates that the fully restrained (FR) connections in steel frames did not behave as expected. Consequently, researchers began studying other possibilities, including making the connections more flexible, to reduce the risk of damage from seismic loading. Recent experimental and analytical investigations pointed out that the seismic response of steel frames with partially restrained (PR) connections might be superior to that of similar frames with FR connections since the energy dissipation at PR connections could be significant. This beneficial effect has not yet been fully quantified analytically. Thus, the dissipation of energy at PR connections needs to be considered in analytical evaluations, in addition to the dissipation of energy due to viscous damping and at plastic hinges (if they form). An algorithm is developed and verified by the authors to estimate the nonlinear time-domain dynamic response of steel frames with PR connections. The verified algorithm is then used to quantify the major sources of energy dissipation and their effect on the overall structural response in terms of the maximum base shear and the maximum top displacement. The results indicate that the dissipation of energy at PR connections is comparable to that dissipated by viscous damping and at plastic hinges. In general, the maximum total base shear significantly increases with an increase in the connection stiffness. On the other hand, the maximum top lateral displacement $U_{max}$ does not always increase as the connection stiffness decreases. Energy dissipation is considerably influenced by the stiffness of a connection, defined in terms of the T ratio, i.e., the ratio of the moment the connection would have to carry according to beam line theory (Disque 1964) and the fixed end moment of the girder. A connection with a T ratio of at least 0.9 is considered to be fully restrained. The energy dissipation behavior may be quite different for a frame with FR connections with a T ratio of 1.0 compared to when the T ratio is 0.9. Thus, for nonlinear seismic analysis, a T ratio of at least 0.9 should not be considered to be an FR connection. The study quantitatively confirms the general observations made in experimental results for frames with PR connections. Proper consideration of the PR connection stiffness and other dynamic properties are essential to predict dynamic behavior, no matter how difficult the analysis procedure becomes. Any simplified approach may need to be calibrated using this type of detailed analytical study.

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

A Clinical Study on Stroke Presymtoms as Prospective Factors (중풍발병 예측인자로서 경항부강직과 안면경련에 관한 임상연구)

  • Choi, Dong-Jun;Han, Chang-Ho;Lee, Won-Chul;Jun, Chan-Yong;Cho, Ki-Ho;Choi, Sun-Mi
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.758-762
    • /
    • 2007
  • Objectives : This study investigated the relationship between presymtoms and stroke subtype in early state of stroke patients. Methods : From Oct. 2005 to May 2007, 623 early state stroke patients were included. Patients were hospitalized within 30 days after the onset of stroke at DongGuk University International Hospital, Kyungwon University In-cheon Oriental Medical Hospital, or Kyung Hee University Oriental Hospital. We investigated general characteristics, stroke subtype, and presymtoms (facial spasm, neck stiffness). Results : Hemorrhagic stroke had more facial spasm than ischemic stroke(odds ratio 2.80). Small vessel occlusion had more neck stiffness than others(odds ratio 1.59). Conclusions : Facial spasm and neck stiffness would be valuable as stroke presymtoms.

  • PDF