• 제목/요약/키워드: stiffness optimization

검색결과 519건 처리시간 0.028초

Topology optimization with functionally graded multi-material for elastic buckling criteria

  • Minh-Ngoc Nguyen;Dongkyu Lee;Joowon Kang;Soomi Shin
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.33-51
    • /
    • 2023
  • This research presents a multi-material topology optimization for functionally graded material (FGM) and nonFGM with elastic buckling criteria. The elastic buckling based multi-material topology optimization of functionally graded steels (FGSs) uses a Jacobi scheme and a Method of Moving Asymptotes (MMA) as an expansion to revise the design variables shown first. Moreover, mathematical expressions for modified interpolation materials in the buckling framework are also described in detail. A Solid Isotropic Material with Penalization (SIMP) as well as a modified penalizing material model is utilized. Based on this investigation on the buckling constraint with homogenization material properties, this method for determining optimal shape is presented under buckling constraint parameters with non-homogenization material properties. For optimal problems, minimizing structural compliance like as an objective function is related to a given material volume and a buckling load factor. In this study, conflicts between structural stiffness and stability which cause an unfavorable effect on the performance of existing optimization procedures are reduced. A few structural design features illustrate the effectiveness and adjustability of an approach and provide some ideas for further expansions.

Stability and parameters influence study of fully balanced hoist vertical ship lift

  • Cheng, Xionghao;Shi, Duanwei;Li, Hongxiang;Xia, Re;Zhang, Yang;Zhou, Ji
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.583-594
    • /
    • 2018
  • A theoretical formulation based on the linearized potential theory, the Descartes' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

Seismic behavior of thin cold-formed steel plate shear walls with different perforation patterns

  • Monsef Ahmadi, H.;Sheidaii, M.R.;Tariverdilo, S.;Formisano, A.;De Matteis, G.
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.377-388
    • /
    • 2021
  • Thin perforated Steel Plate Shear Walls (SPSWs) are among the most common types of seismic energy dissipation systems to protect the main boundary components of SPSWs from fatal fractures in the high-risk zones. In this paper, the cyclic behavior of the different circular hole patterns under cyclic loading is reported. Based on the experimental results, it can be concluded that a change in the perforation pattern of the circular holes leads to a change in the locations of the fracture tendency over the web plate, especially at the plate-frame interactions. Accordingly, the cyclic responses of the tested specimens were simulated by finite element method using the ABAQUS package. Likewise, perforated shear panels with a new perforation pattern obtained by implementing Topology Optimization (TO) were proposed. It was found that the ultimate shear strength of the specimen with the proposed TO perforation pattern was higher than that of the other specimens. In addition, theoretical equations using the Plate-Frame Interaction (PFI) method were used to predict the shear strength and initial stiffness of the considered specimens. The theoretical results showed that the proposed reduced coefficients relationships cannot accurately predict the shear strength and initial stiffness of the considered perforated shear panels. Therefore, the reduced coefficients should be adopted in the theoretical equations based on the obtained experimental and numerical results. Finally, with the results of this study, the shear strength and initial stiffness of these types of perforated shear panels can be predicted by PFI method.

트랙터 캐빈의 진동저감을 위한 방진고무의 형상최적설계 (Shape Optimal Design of Anti-Vibration Rubber Assembly to Reduce the Vibration of a Tractor Cabin)

  • 최효준;이상훈
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.657-663
    • /
    • 2018
  • 본 연구에서는 농업용 트랙터에 조립식으로 결합되는 캐빈에 사용되는 방진고무의 진동절연성능을 향상시키기 위하여 형상최적설계를 수행하였다. 초탄성거동을 보이는 고무의 물성을 평가하기 위하여 일축 및 이축 인장시험을 수행하였고 이를 이용하여 유한요소해석에 입력 가능한 재료 모델을 도출하였다. 실제 트랙터의 운전 상태에서 진동을 측정하여 방진고무로 전달되는 입력 가진 및 이로 인한 캐빈 프레임의 응답을 정량화하였다. 비선형 거동을 보이는 방진고무의 특성을 반영하기 위해 정해석을 이용하여 방진고무의 하중-변위 곡선을 도출하였다. 이로부터 특정 하중 혹은 변위가 가해진 상태에서 방진고무의 강성을 계산할 수 있었으며 이를 캐빈의 조화가진해석에 사용하였다. 해석결과와 시험 결과의 비교를 통하여 해석모델 및 기법의 타당성을 검증하였다. 방진고무의 형상설계를 위하여 다구찌의 인자설계법이 사용되었으며 이를 통하여 강성이 최소화된 방진고무의 형상을 찾을 수 있었다. 방진고무의 최적 형상을 고려하여 조화가진해석을 수행한 결과 초기설계 대비 35 % 이상 개선된 진동저감효과를 확인할 수 있었다.

EDISON 프로그램을 사용한 3차원 팽창 피라미드 구조의 최적화 연구 (A study on the optimization of three-dimensional auxetic pyramid structure by using EDISON program)

  • 김규영;김수호;윤기원;김현규
    • 한국항공우주학회지
    • /
    • 제45권9호
    • /
    • pp.807-815
    • /
    • 2017
  • 팽창(auxetic) 구조물은 음의 프와송 비로 거동하는 구조체로, 에너지 흡수 및 파괴 인성 등이 높은 것으로 알려져 있다. 본 논문에서는 최적화의 목적을 음의 프와송비가 높으며 50 N/mm 이상의 강성을 갖는 팽창 구조를 설계하고자한다. 길이, 두께, 각도를 설계 인자로 정의하였고, 응력, 프와송 비 그리고 강성을 반응 요소로서 정의하였다. Box-Behnken 방법을 사용하여 4인자, 3수준 실험 설계를 수행하였고, Edison 프로그램 중 CSD_EPLAST를 사용하여 유한요소 해석을 수행하였다.

5MW급 풍력발전기용 기어박스 하우징의 형상 최적설계 (Optimum Shape Design of Gearbox Housing for 5MW Wind Turbines)

  • 정기용;이대연;최은호;조진래;임오강
    • 한국전산구조공학회논문집
    • /
    • 제25권3호
    • /
    • pp.237-243
    • /
    • 2012
  • 5MW급 풍력발전용 기어박스의 효율적인 구조해석과 근사모델을 생성하여 경량화를 위한 형상 최적설계를 수행하였다. 풍력발전용 기어박스의 구조는 기어 트레인, 축, 베어링, 하우징과 같이 복잡한 구성요소로 이루어져 있어 구조해석에 많은 요소 수를 요구하고 있다. 본 연구에서는 헬리컬 기어의 치강성 계수를 고려한 효과적인 기어박스의 구조해석 모델을 생성하였다. 치강성 계수를 사용한 유성 기어열은 상대적으로 적은 요소 수와 해석시간으로도 전체 기어박스 시스템의 구조해석과 형상 최적화를 가능케 한다. 치강성을 이용한 단순화된 해석모델과 근사모델을 적용하여 하우징 무게에 영향이 큰 부위의 두께를 설계변수로 설정하여 케이스 최적설계안을 도출하였으며, 최적설계를 위해 사용된 근사모델의 신뢰성과 최적 기어박스 하우징 형상의 수치해석을 통해 타당성을 검증하였다.

신경망 및 모델업데이팅에 기초한 구조물 손상평가 (Structural Damage Assessment Based on Model Updating and Neural Network)

  • 조효남;최영민;이성칠;이광민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.121-128
    • /
    • 2003
  • 토목구조물의 손상평가를 위해 현재까지 인공신경망이 유형분류기로 많이 이용되어왔다. 그러나 본 논문에서는 신경망을 구조재해석기로 사용하여 최적화에 의한 모델업데이팅을 이용한 손상평가를 수행하였다. 최적화에 의한 모델업데이팅을 위해 손상전후의 구조물 모드형상의 절대차의 합을 목적함수로 하였으며, 부재의 강성을 미지의 변수로 취급하였다. 본 손상평가 알고리즘의 적용성을 검토하기 위해 단순보 형태의 판형교 모델에 수치적으로 적용하였다. 적용결과 구조 재해석을 위해 유한요소법을 이용한 결과와 유사한 정도의 손상추정 결과를 얻었다.

고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템 (Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm)

  • 김성찬;김병주;김이담
    • 대한조선학회논문집
    • /
    • 제59권1호
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.

고유진동수를 고려한 박판 구조물의 보강재 최적설계 (Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency)

  • 임오강;정승환;최은호;김대우
    • 한국전산구조공학회논문집
    • /
    • 제19권2호
    • /
    • pp.195-202
    • /
    • 2006
  • 박판 구조물은 자동차를 비롯하여 항공기, 인공위성, 선박 등의 운송 수단과 건축물의 돔과 같이 효율적으로 활용되어지고 있으며 동시에 경량화를 필요로 하는 경우 널리 사용되는 구조물이다. 엔진, 변속기 등의 회전체의 부품을 보호하는 박판 구조물인 자동차 후드에서의 새로운 보강재 형상을 제시하였다. 자동차 후드는 엔진 룸에 장착되어 있는 회전체의 진동 영향을 민감하게 받아 공진현상이 발생할 우려가 있다. 따라서 설계하중을 지지할 강성을 가지며 동적 특성이 고려되어야 한다. 즉, 강성을 유지하면서 공진에 의한 진동도 고려해야 한다. 이는 곧 승차감과 직결된 중요한 문제이다. 그러므로 최적의 강성증대 설계결과를 얻기 위해서는 정적 동적 강성평가와 함께 고유진동수를 고려한 보강재의 최적설계가 도입되어야 한다. 본 연구에서는 고유진동수를 고려한 대표적인 박판 구조물인 자동차 후드의 보강재 위상을 구하고, 도출된 위상에서 보강재의 형상 최적 설계 후 제시된 보강재 단면의 최적 치수를 다구찌 방법을 이용한 직교 배열표상에서의 각 설계변수의 수준과 최적의 설계변수의 조건으로 구하였다.

Parametric modeling and shape optimization of four typical Schwedler spherical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Li, L.P.;Zhang, D.L.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.813-833
    • /
    • 2015
  • Spherical reticulated shells are widely applied in structural engineering due to their good bearing capability and attractive appearance. Parametric modeling of spherical reticulated shells is the basis of internal analysis and optimization design. In the present study, generation methods of nodes and the corresponding connection methods of rod elements are proposed. Modeling programs are compiled by adopting the ANSYS Parametric Design Language (APDL). A shape optimization method based on the two-stage algorithm is presented, and the corresponding optimization program is compiled in FORTRAN environment. Shape optimization is carried out based on the objective function of the minimum total steel consumption and the restriction condition of strength, stiffness, slenderness ratio, stability. The shape optimization of four typical Schwedler spherical reticulated shells is calculated with the span of 30 m~80 m and rise to span ratio of 1/7~1/2. Compared with the shape optimization results, the variation rules of total steel consumption along with the span and rise to span ratio are discussed. The results show that: (1) The left and right rod-Schwedler spherical reticulated shell is the most optimized and should be preferentially adopted in structural engineering. (2) The left diagonal rod-Schwedler spherical reticulated shell is second only to left and right rod regarding the mechanical behavior and optimized results. It can be applied to medium and small-span structures. (3) Double slash rod-Schwedler spherical reticulated shell is advantageous in mechanical behavior but with the largest total weight. Thus, this type can be used in large-span structures as far as possible. (4) The mechanical performance of no latitudinal rod-Schwedler spherical reticulated shell is the worst and with the second largest weight. Thus, this spherical reticulated shell should not be adopted generally in engineering.