• 제목/요약/키워드: stiffness changes

검색결과 540건 처리시간 0.032초

스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구 (A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle)

  • 사종성;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.671-675
    • /
    • 2001
  • Elastomers, which are engine mounts and body mounting rubbers, are traditionally designed for NVH use in vehicles, and they are designed to isolate specific unwanted frequencies. According to the measurement of the characteristics of engine mounts and body mounting rubbers, dynamic stiffness changes with respect to the driving miles accumulated in engine mounts and initial load in body mounting. This study looks at the variability in same engine mount properties, and the desired dynamic stiffness may increased with driving miles accumulated. And the dynamic stiffness of body mounting rubber changes very stiff above 150Hz.

  • PDF

CREEP에 의한 못 결합부(結合部)의 강성도(剛性度)의 변화(變化)에 관한 연구(硏究) (Study on the change in stiffness of nailed joints due to creep)

  • 장상식
    • Journal of the Korean Wood Science and Technology
    • /
    • 제17권4호
    • /
    • pp.35-43
    • /
    • 1989
  • Nailed joints, which are commonly used in Wooden structures, transmit loads from one member to another and induce partial composite actions between members. Long-term loads induce creep slip in nailed joints and affect load sharing and partial composite action, which may reduce joint stiffness. Two theoretical viscous-viscoelastic models were developed for nailed joints to predict creep behavior under long-term variable loads. Those models were also used to predict stiffness changes under long-term variable loads. The stiffness of nailed joint is defined as a Secant modulus which is called the joint modulus or slip modulus. Input data for the models are the results of constant load tests under three different load levels. To verify the models, nailed joints were also tested under two long-term variable load functions. The predictions of the models were very close to the experimental data. Therefore, the theoretical viscous-viscoelastic models and procedures developed in this study can be applied to predict creep slip and the changes in joint moduli of nailed joints under long-term variable loads.

  • PDF

카본 자전거 프레임 소재의 적층 패턴에 따른 프레임 강성 연구 (Study on Frame Stiffness based on Lamination Pattern of Carbon Bicycle Frame Materials)

  • 최웅재;김홍건;곽이구
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.51-58
    • /
    • 2021
  • The notion of leisure has changed with industrial development and improvement in life quality. Bicycling is a healthy sport; it is an exercise performed while enjoying nature. There have been many changes in the materials that are used to manufacture the bicycle frame. Iron and aluminum have been mainly used in bicycle frames. However, carbon-based materials are lighter and stronger than metal frames. The bicycles made of carbon composite changes frame rigidity depending on the direction of the carbon sheet sacking angle. We study the direction of composite material and how they affect the stiffness of frames based on the stacking angle.

조합하중을 받는 무량판 구조의 강성 감소 계수에 관한 고찰 (Stiffness Reduction Factor for Flat-Plate Structures under Combined Load)

  • 송진규;최정욱;윤정배
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.302-310
    • /
    • 2003
  • Cracking of slabs will be caused by applied load and volume changes during the life of a structure and thus it reduces flexural stiffness of slabs. The effect of slab cracking must be considered for appropriate modeling of the flexural stiffness for frame members used in structural analysis. Analytical and experimental study was undertaken to estimate the stiffness reduction of slabs. In the analytical approach, the trend of slab stiffness reduction related to gravity and lateral loads is found and the stiffness reduction factor ranged from a half to a quarter in ACI building code is reasonable when defining range. Analyzing results of the test by Hwang and Moehle for 0.5% drift show that the differences of rotational stiffness on the connection types is found and good results of lateral stiffness using the value of one-third is obtained.

  • PDF

한지사 혼용직물의 접착심 접착 후 역학적 물성 변화 (Changes of Physical Properties of Hanji Yarn Blended Fabrics after Fusing)

  • 지주원
    • 한국의류학회지
    • /
    • 제44권1호
    • /
    • pp.159-174
    • /
    • 2020
  • We selected 100% cotton fabric, 100% Hanji yarn fabric and two kinds of cotton / Hanji yarn blended fabrics and fused them with three kinds of interlinings in order to examine changes to the physical properties and the post-adhesion physical properties of Hanji yarn blended fabrics. Changes in KES values were examined after fusing. First, EM, B, 2HB, MMD values of Hanji yarn blended fabrics were higher than cotton fabric, and LT, RT, G, 2HG, LC, WC values of cotton fabric were higher than Hanji yarn blended fabrics. Tensile recovery was lowered, bending stiffness was increased, and shear stiffness was lowered when Hanji yarn was mixed. Second, the KES value of LT, B, 2HB, G, 2HG, LC, WC increased after fusing, while the EM, MMD values decreased. SMD was shown to decrease or increase depending on the type of fabric. The adhesive effect on bending stiffness and shear stiffness due to the mixing of Hanji shows a different tendency in the comparison of αB and αG.

근육의 성질에 관한 성별 차이 비교 연구 - 청년과 노년에서의 근 긴장도, 탄성, 경직도 지수와 두 나이대 간 지수 변화를 중심으로 (A Comparative Study of Gender-Differences on Muscular Properties, Focusing on Tone, Elasticity, Stiffness, and Their Changes between Young and Old Age Groups)

  • 방재훈;한진석;최예진;이나경
    • 대한통합의학회지
    • /
    • 제10권3호
    • /
    • pp.199-208
    • /
    • 2022
  • Purpose : The study aimed to examine gender-differences in muscle tone, elasticity, and stiffness of the erector spinae in young and old subjects. This study also aimed to assess the effect of aging on muscle tone, elasticity, and stiffness of the erector spinae in men and women, and compare the trend of the aging effect between the two gender groups. Methods : With the muscle in the relaxed state and subjects in the prone position, a myotonometer was used to quantify muscle tone, elasticity, and stiffness, of the erector spinae in 102 participants[46 males (29 young subjects, aged 22.48±2.23 years and 17 old subjects, aged 76.35±3.71 years), 56 females (40 young subjects, aged 20.38±1.43 years and 16 old subjects, aged 74.56±5.40 years)]. Results : The tone and stiffness of the erector spinae muscles were greater in men than in women for both age groups (p<.001-.01), while elasticity did not show a significant difference between men and women. For the direction of change, both male and female groups showed significantly increased tone and stiffness, and decreased elasticity with increasing age (p<.001). For age-related changes, a different tendency was observed between men and women. Men showed a greater increase in tone than women with aging. in contrast, both men and women exhibited a similar decrease or increase in elasticity and stiffness. Conclusion : Gender-differences in the erector spinae in terms of muscle tone and stiffness were observed. Regardless of the age, men had higher muscle tone and stiffness than women, but not elasticity. The erector spinae muscles showed age-related changes in all aspects of muscle tone, elasticity, and stiffness, in both men and women. Notably, men presented greater variation than women in the amount of increase of muscle tone with aging. These findings have implications for musculoskeletal therapeutic approaches, and gender-customized tuning may be indicated for designing exercise interventions to prevent and manage gender-sensitive muscular injuries or diseases and frailty.

Effects of Kinesio Taping on Muscle Tone, Stiffness in Patients with Shoulder Pain

  • Choi, Jin-Ho
    • 대한물리의학회지
    • /
    • 제12권3호
    • /
    • pp.43-47
    • /
    • 2017
  • PURPOSE: The purpose of this study was to identify the effects of physical therapy plus Kinesio taping (KT) on muscle tone and stiffness in patients with shoulder pain. METHODS: This study included 22 participants who were divided into the experimental group (n=11) who underwent a routine physical therapy with KT and the control group (n=11) who received the same physical therapy only. The physical therapy consisted of heat application and electrical stimulation. Heat was applied for 10 minutes and electrical stimulation was conducted for 20 minutes. Intervention was provided over a 1-week period, and frequency for muscle tone and stiffness was measured to determine changes in shoulder muscle status. The muscles were supraspinatus and deltoid. Measurements were taken before, after 1day, 3day and after 1 week to identify time-dependent effects of intervention. RESULTS: The effects of the intervention were significant in both groups, and effects were greater in the experimental group. Changes in muscle tone and stiffness were statistically significant in both groups and at varying time points (p<.05). CONCLUSION: Based on the improved muscle performance found in this study, KT is considered an effective intervention strategy for patients with shoulder pain when it is combined with conventional physical therapy.

Influence of Bearing Stiffness on the Static Properties of a Planetary Gear System with Manufacturing Errors

  • Cheon, Gill-Jeong;Parker, Robert, G.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1978-1988
    • /
    • 2004
  • Hybrid finite element analysis was used to analyze the influence of bearing stiffness on the static properties of a planetary gear system with manufacturing errors. The effects of changes in stiffness were similar for most of the manufacturing errors. State variables were most affected by the stiffness of the planet ,bearings. Floating either the sun or carrier helps to equal load sharing and minimizes the critical tooth stress. The effects of a floating sun and carrier are similar, but it is not recommended that both float, because this can induce greater critical tooth stress. Planet bearing stiffness should be optimized. Both load sharing and critical tooth stress should be considered to determine optimal bearing stiffness.

스퀼 융합모델을 이용한 접촉부 강성인자에 따른 브레이크 스퀼 영향도 연구 (Effect of Contact Stiffness on Brake Squeal Analysis Using Analytical FE Squeal Model)

  • 강재영
    • 한국소음진동공학회논문집
    • /
    • 제24권10호
    • /
    • pp.749-755
    • /
    • 2014
  • The analytical-finite element(FE) squeal model is applied to investigate the squeal propensity associated with contact stiffness of the disc brake system. The system contact stiffness is incorporated into the perturbed equations of motion in the analytical manner where the brake components are modeled by FE method. The results show that the contact stiffness of the friction material and the contact stiffness between the pads and caliper are the influential factors on the squeal propensity. Particularly, the modal instability of the 3200 Hz squeal mode drastically changes with respect to the contact stiffness between the pads and caliper.

BTCA와 실리론 처리 면직물의 역학적 성질 (Mechanical Properties of Cotton Fabric Treated with BTCA and Polyalkkyleneoxide modified aminofunctional silicone)

  • 조성교;남승현
    • 한국의류학회지
    • /
    • 제24권7호
    • /
    • pp.987-994
    • /
    • 2000
  • Cotton fabrics were finished with mixture of BTCA and silicone by pad-dry-cure process to achieve better mechanical properties than those of finished with BTCA alone. The changes of mechanical properties o( finished cotton fabrics were measured with by the KES-FB System and the hand values were calculated from the data of mechanical properties. With the durable press finish with BTCA tensile, bending, shear and compression properties increased. In hand values, Stiffness Crispness and Anti-Drape Stiffness increased, and Fullness & Softness decreased. Whereas silicone treatment reduced bending and shear properties and improved tensile and compressional resilience. Thus, Stiffness Crispness and Anti-Drape Stiffness decreased, and Fullness & Softness increased. These results indicated that BTCA treatment restricts fiber/yarn mobility in the fabric structure due to crosslinking, but silicone treatment reduces inter-fiber and inter-yarn frictional forces. Therefore, finish with mixture of BTCA and silicone provided cotton fabrics with a lower Stiffness, Crispness and Anti-Drape Stiffness and a higher Fullness & Softnesss than finish with BTCA alone.

  • PDF