• 제목/요약/키워드: stiffened angle connections

검색결과 2건 처리시간 0.015초

Experimental and analytical behavior of stiffened angle joints

  • Wang, Peng;Pan, Jianrong;Wang, Zhan;Chen, Shizhe
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.67-78
    • /
    • 2018
  • The application of rib stiffeners is common on steel connections, with regard to the stiffened angle connection, experimental results about the influence of stiffeners under monotonic and cyclic loading are very limited. Consequently, this paper presents the experimental investigation on four types angle connections with or without stiffener under static loading and another four type stiffened angle connections subjected to cyclic loading. The static experimental result showed that the rib stiffener weld in tension zone of the connection greatly enhanced its initial rotational stiffness and flexural strength. While a stiffener was applied to the compression zone of the connection, it had not obvious influences on the initial rotational stiffness, but increased its flexural strength. The moment-rotation curves, skeleton curves, ductility, energy dissipation and rigidity were evaluated under cyclic loading. Stiffened top-and-seat angle connections behaved as semi-rigid and partial strength, and rotation of all stiffened angle connections exceeded 0.04rad. The failure modes between monotonic and cyclic loading test were completely different and indicated certain robustness.

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.