• Title/Summary/Keyword: stiff system

Search Result 158, Processing Time 0.026 seconds

Energy based design of a novel timber-steel building

  • Goertz, Caleb;Mollaioli, Fabrizio;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.351-360
    • /
    • 2018
  • Energy-based methodology is utilized to design novel timber-steel hybrid core wall system. The timber-steel core wall system consists of cross laminated timber (CLT), steel columns, angled brackets and t-stub connections. The CLT wall panels are stiff and strong, and ductility is provided through the steel t-stub connections. The structural system was modelled in SAP2000 finite element program. The hybrid system is explained in detail and validated using first principles. To evaluate performance of the hybrid core system, a 7-story building was designed using both forced-based design and energy based design (EBD) approaches. Performance of the structure was evaluated using 10 earthquakes records selected for 2500 return period and seismicity of Vancouver. The results clearly served as a good example of the benefits of EBD compared to conventional forced based design approaches.

A Study on the Signal Processing and Robust Control for a 3-DOF Active Vibration Isolator (3자유도 능동형 제진 시스템을 위한 신호처리 및 강인제어에 관한 연구)

  • Moon, Jun-Hee;Kim, Hwa-Soo;Pahk, Heui-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.153-156
    • /
    • 2006
  • The vibration isolation system is a system that attenuates the vibration transmitted from surroundings by using external energy supply like electricity and feedback and/or feedforward functions. Such a system needs stiff structure to make precise positioning without ripple within a certain bandwidth. So, a horizontal and rotary arrangement of the actuation module is suggested by using lever linkage. Modeling and kinematic formulation are completed and system identification is accomplished to tune the design variables accurately. The vibration isolation control is performed by mu-synthesis with the uncertainties in design variables. Low frequency signal enhancement circuit and saturation proof integration algorithm are devised to use seismic sensors for displacement control. This overall system shows good disturbance rejection performance.

  • PDF

Dynamic Characteristic Identification on Steel Column bases Installed in Pendulum-type Earthquake Response Observatory

  • Choi, Jae-Hyouk;Ohi, Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2225-2235
    • /
    • 2004
  • An observatory termed 'Steel Swing' has been developed, where a 15000 kg pendulum is hanged from a stiff steel frame. A building element can be tested after inserted between the pendulum and the frame. Free vibration, forced vibration tests and earthquake monitoring were performed on an exposed-type steel column base. The response records monitored during natural earthquakes were used to identify the vibration property of the specimen. Identified system gain was approximated by a theoretical gain of linear SDOF system, and the response calculated based on such a linear system agrees with the monitored response fairly well. This research technique can be applied to check the behaviors of new materials and new details of connections and the safety of non-structural elements as well.

Numerical Implication of Concrete Material Damage at the Finite Element Levels (콘크리트 재료손상에 대한 유한요소상의 의미)

  • Rhee, In-Kyu;Roh, Young-Sook;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.37-46
    • /
    • 2006
  • The principal objective of this study is to assess the hierarchical effects of defects on the elastic stiffness properties at different levels of observation. In particular, quantitative damage measures which characterize the fundamental mode of degradation in the form of elastic damage provide quite insightful meanings at the level of constitutive relations and at the level of structures. For illustration, a total of three model problems of increasing complexity, a 1-D bar structure, a 2-D stress concentration problem, and a heterogeneous composite material made of a matrix with particle inclusions. Considering a damage scenario for the particle inclusions the material system degrades from a composite with very stiff inclusions to a porous material with an intact matrix skeleton. In other damage scenario for the matrix, the material system degrades from a composite made of a very stiff skeleton to a disconnected assembly of particles because of progressive matrix erosion. The trace-back and forth of tight bounds in terms of the reduction of the lowest eigenvalues are extensively discussed at different levels of observation.

Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion (비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향)

  • 김용석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

Modeling on an Antenna Flexible Characteristics of a Prototype Gimbal with an Antenna and Major Design Factors to determine a System Bandwidth (원형(Prototype) 안테나가 부착된 짐발의 안테나 유연특성 모델링 및 시스템 대역폭 결정 주요설계인자)

  • Baek Joo Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.743-753
    • /
    • 2005
  • The model of azimuth driving servo system with a flexible antenna in a prototype gimbal has been derived in this work. The validity of the model is verified by comparing the result of the model with that of experiment. It is found that one should consider an antenna as a flexible body in case of modeling the dynamics of the gimbal with an antenna. It is also known that the effect of reducing backlash magnitude for extending the bandwidth in the system with a flexible antenna is smaller than the system with a stiff antenna. It is thought that the model-based design optimization of the gimbal with an antenna will be possible by virtue of the derived model, when a weight reduction and a bandwidth extension are required.

A comparative study on the subspace based system identification techniques applied on civil engineering structures

  • Bakir, Pelin Gundes;Alkan, Serhat;Eksioglu, Ender Mete
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • The Subspace based System Identification Techniques (SSIT) have been very popular within the research circles in the last decade due to their proven superiority over the other existing system identification techniques. For operational (output only) modal analysis, the stochastic SSIT and for operational modal analysis in the presence of exogenous inputs, the combined deterministic stochastic SSIT have been used in the literature. This study compares the application of the two alternative techniques on a typical school building in Istanbul using 100 Monte Carlo simulations. The study clearly shows that the combined deterministic stochastic SSIT performs superior to the stochastic SSIT when the techniques are applied on noisy data from low to mid rise stiff structures.

On Installation of Bus Trunk System for Wind Tower (풍력타워용 부스닥트 포설시스템 개발)

  • Lee, Joon-Keun;Kim, Bong-Seok;Park, Seong-Hee;Ahn, Hyung-Joon;Lee, Hee-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.330-335
    • /
    • 2012
  • A Bus Trunk System for Wind Tower is introduced. A marine cable has been widely used in wind tower or other offshore structure. However, as the electric load capacity is getting increased, the large number of cable lines should be used to cover such a huge amount of electric capacities, which makes the installation make quite difficult due to the heavy weight and volume of the present cables. On the other hand, by using a single bus trunk system line, the power capacity amount of 16 number of cable can be delivered with significant compactness. However, unlike flexible cable, the bus trunk is relatively stiff which could arise resonance phenomenon in the operating condition of wind tower, therefore, the vibration characteristics of bus trunk should be investigated and verify its long-term reliability during the life time of the wind tower.

  • PDF

Stability Improvement of Battery Energy Storage System considering Synchronous Inductance Effect of Diesel Generator

  • Jo, Jongmin;An, Hyunsung;Chun, Kwan-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2254-2261
    • /
    • 2018
  • This paper analyzes stability of current control in respect of four cases of battery energy storage system (BESS) in a stand-alone microgrid. The stand-alone microgrid is composed of BESS, diesel generator and controllable loads, where all of them have a rated power of 50kW. The four cases are considered as following: 1) BESS with a stiff grid 2) BESS with the diesel generator 3) BESS with passive damping + diesel generator 4) BESS with active damping + diesel generator, and their stabilities are analyzed in the frequency domain and discrete time domain. The comparative analysis for four cases are verified through simulation and experiments through demonstration site of the stand-alone microgrid, where the DC link is connected to a 115kW battery bank composed of 48 lead-acid batteries (400AH/12V). Experimental results show a good agreement with the analysis.

Analysis of Dynamic Characteristics of A High-speed Milling Spindle Due to Support Stiffness of Drawbar (고속주축의 드로우바 지지조건에 따른 동특성 해석)

  • 노승국;박종권;경진호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.484-487
    • /
    • 2003
  • In designing AMBs (active magnetic bearings) for high-speed spindle system, the shaft is usually assumed as a rigid rotor. For automatic tool change process, there should be a tool clamping system with drawbar using spring or hydraulic force, and the drawbar in the spindle can be in various condition of support during design and manufacturing error. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1$\^$st/ bending mode of spindle.

  • PDF