• Title/Summary/Keyword: sticking

Search Result 373, Processing Time 0.027 seconds

The Influence of Bi-Sticking Coefficient in Bi-2212 Thin Film

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.152-156
    • /
    • 2000
  • Bi-thin films are fabricated by an ion beam sputtering, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

The study on the image sticking in high Xe% of AC PDP (AC PDP의 high Xe%에서의 잔상연구)

  • Kim, Young-Rak;Ham, Myung-Soo;Park, Mi-Young;Choi, Jung-Hoon;Lee, Ho-Jun;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.9-11
    • /
    • 2003
  • Image sticking, the phenomenon that the previously displayed pattern still remains after the image is changed into different image, is one of the most serious problem in realizing high picture quality. There are various methods decreasing the image sticking phenomenon. In this paper, we have tried to decrease boundary image sticking by reducing the discharge concentration phenomenon in the boundary of pattern using the new driving method that is applied to bias in the address electrode.

  • PDF

Feature Scale Simulation of Selective Chemical Vapor Deposition Process

  • Yun, Jong-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.190-195
    • /
    • 1995
  • The feature scale model for selective chemical vapor deopsition process was proposed and the simulation was performed to study the selectivity and uniformity of deposited thin film using Monte Carlo method and string algorithm. The effect of model parameters such as sticking coefficient, aspect ratio, and surface diffusion coefficient on the deposited thin film pattern was improved for lower sticking coefficient and higher aspect ratio. It was revealed that the selectivity loss ascrives to the surface diffusion. Different values of sticking coefficients on Si and on SiO2 surface greatly influenced the deopsited thin film profile. In addition, as the lateral wall angle decreased, the selectively deposited film had improved uniformity except the vicinity of trench wall. The optimum eondition for the most flat selective film deposition pattern is the case with low sticking coefficient and slightly increased surface diffusion coefficient.

  • PDF

Role of Redeposition of Sputtered Mg Particles in Image Sticking

  • Nikishin, Nikolay;Manakhov, Anton;Kim, Yoon-Kyung;Hur, Min;Heo, Eun-Gi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.381-383
    • /
    • 2008
  • One of important factors responsible for image sticking in AC PDP is a sputtering of MgO layer under ionic bombardment. Sputtered Mg particles can migrate to the neighbor cells, where the migration makes a change of discharge condition. It leads to the local non-uniformity of a luminescence in the panel, resulting in the image sticking.

  • PDF

Characteristics of Sticking Coefficient in BSCCO Thin Film

  • Cho, Choon-Nam;Ahn, Joon-Ho;Oh, Jae-Han;Choi, Woon-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.59-63
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$ This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

The characteristic of boundary image sticking as local temperature variation in panel (AC PDP에서의 국부적 패널 온도 변화에 따른 경계 잔상 특징)

  • Choi, Woo-Sung;Lee, Ji-Hoon;Jang, Yong-Min;Yoo, Sue-Bok;Lee, Ho-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.204-206
    • /
    • 2005
  • Although intensive experiments have been performed to investigate the origin of boundary image sticking, one of major factors to determine display quality in AC PDP, it has not being reported clearly why it is occurred. The relationships between boundary image sticking and its possible origins such as phosphor degradation, temporal change of MgO layer, wall charge have been discussed. In this paper, we have analyzed characteristics of the boundary image sticking more clearly by the influence of local panel temperature.

  • PDF

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • An, In-Soon;Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Evaluation of Sticking Coefficient in BSCCO Thin Film Fabricated by Co-sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Kwon-Hyun;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.80-84
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coeffi-cient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 73$0^{\circ}C$ and decreases linearly with temperature over 73$0^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi\ulcornerO\ulcorner, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

A Study on the Image Sticking Phenomenon in AC PDP (AC PDP의 Image Sticking 현상에 관한 연구)

  • Lim, Sung-Hyun;Shim, Kyoung-Ryul;Kim, Dong-Hyun;Lee, Ho-Joon;Park, Chung-Hoo;Kim, Gyu-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1640-1643
    • /
    • 2002
  • Image sticking, the phenomenon that the previously displayed pattern still remains after the image is changed into different image, is one of the most serious problem in realizing high picture quality. In this paper, we tried characterizing this undesirable feature in terms of the luminance and the intial firing voltage at ramp up time in reset period. It was found that the cell located at the boundary of previous image pattern show low firing voltage and high background luminance. And the results show that the degree of the image sticking is severely affected by discharge duration and the length of the sustain period.

  • PDF

Sticking and Desorption of Atomic Hydrogen on the Armchair Edges of Bilayer Graphene

  • Natividad, Michelle;Arboleda Jr., Nelson;Kasai, Hideaki
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.185-189
    • /
    • 2016
  • The coupled channel method via the Local Reflection (LORE) matrix is employed to investigate the quantum mechanical behavior of the sticking or adsorption and desorption of hydrogen (H) atom on bilayer graphene via the armchair edge. The sticking and desorption probabilities of H are calculated and are plotted against the initial translational energy of H. The sticking probability plot shows a barrierless reaction indicating that hydrogen is easily adsorbed on the armchair edge of graphene. The desorption probability plot, however, shows that desorption of H from the graphene sheets is an activated process with a barrier height of 4.19 eV suggesting that a strong bond exists between the adsorbed H atom and the edge carbon atom. Thus, temperatures higher than the operating temperatures (300 - 1500 K) of conventional fuel cells are necessary to release the adsorbed H atom from the armchair edge of graphene.