• Title/Summary/Keyword: stick-slip behaviour

Search Result 3, Processing Time 0.016 seconds

An experimental study on the fretting fatigue crack behaviour of A12024-T4 (A12024-T4의 프레팅 피로균열거동에 관한 실험적 연구)

  • Lee, Bong-Hun;Lee, Sun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.511-518
    • /
    • 1997
  • The technique of fretting fatigue test was developed and fretting fatigue tests of A12024-T4 were conducted under several conditions. The newly developed calibration methods for measuring surface contact tractions showed good linearity and repeatability. The plate type specimen to which tow bridge type pads were attached and vision system was used to observe the crack behaviour. The oblieque cracks appeared in the early stage of crack growth and they became mode I cracks as they grow about 1 mm. The mode I transition points were found to be longer when surface tractions are higher or bulk stress is lower. Before the crack becomes mode I crack, 'well point' where crack grow about rate is minimum, was detected under every experimental condition. The crack behaviour was found to be affected by surface tractions, contact area, bulk stress. It was also found that partial slip and stick condition is most detrimental and the crack starts from the boundary of stick and slip. For gross slip crack started at the outside edge of pad. After crack mode transition, fretting fatigue cracks showed almost same behaviour of plain mode I fatigue cracks. Equivalent stress intensity factor was used to analyze the behaviour of fretting fatigue cracks and it was found that stress intensity factors can be applied to fretting fatigue cracks.

Shear behavior of foam-conditioned gravelly sands: Insights from pressurized vane shear tests

  • Shuying Wang;Jiazheng Zhong;Qiujing Pan;Tongming Qu;Fanlin Ling
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.637-648
    • /
    • 2023
  • When an earth pressure balance (EPB) shield machine bores a tunnel in gravelly sand stratum, the excavated natural soil is normally transformed using foam and water to reduce cutter wear and the risk of direct muck squeezing out of the screw conveyor (i.e., muck spewing). Understanding the undrained shear behavior of conditioned soils under pressure is a potential perspective for optimizing the earth pressure balance shield tunnelling strategies. Owing to the unconventional properties of conditioned soil, a pressurized vane shear apparatus was utilized to investigate the undrained shear behavior of foam-conditioned gravelly sands under normal pressure. The results showed that the shear stress-displacement curves exhibited strain-softening behavior only when the initial void ratio (e0) of the foam-conditioned sand was less than the maximum void ratio (emax) of the unconditioned sand. The peak and residual strength increased with an increase in normal pressure and a decrease in foam injection ratio. A unique relation between the void ratio and the shear strength in the residual stage was observed in the e-ln(τ) space. When e0 was greater than emax, the fluid-like specimens had quite low strengths. Besides, the stick-slip behavior, characterized by the variation coefficient of measured shear stress in the residual stage, was more evident under lower pressure but it appeared to be independent of the foam injection. A comparison between the results of pressurized vane shear tests and those of slump tests indicated that the slump test has its limitations to characterize the chamber muck fluidity and build the optimal conditioning parameters.

Effect of ground motion characteristics on the pure friction isolation system

  • Nanda, Radhikesh P.;Shrikhande, Manish;Agarwal, Pankaj
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.169-180
    • /
    • 2012
  • The performance of pure friction isolation system with respect to the frequency bandwidth of excitation and the predominant frequency is investigated. A set of earthquake ground motions (artificial as well as recorded [with different combinations of magnitude-distance and local site geology]) is considered for investigating effectiveness of pure friction isolators. The results indicate the performance of pure friction base isolated system does not only depend upon coefficient of friction and mass ratio but the stick-slip behaviour depends upon the frequency content of the excitation as well. Slippage prevails if the excitation frequency lies in a suitable frequency range. This range widens with increasing mass ratio. For larger mass ratios, the sliding effect is more pronounced and the maximum acceleration response is further reduced in the neighbourhood of frequency ratio (${\omega}/{\omega}_n$) of unity. The pure friction isolation system is effective in the case of broadband excitations only and that too, in the acceleration sensitive range of periods. The pure friction system is not effective for protection against narrow band motions for which the system response is quasi-periodic.