• Title/Summary/Keyword: stick-breaking sampling

Search Result 1, Processing Time 0.02 seconds

Introduction to the Indian Buffet Process: Theory and Applications (인도부페 프로세스의 소개: 이론과 응용)

  • Lee, Youngseon;Lee, Kyoungjae;Lee, Kwangmin;Lee, Jaeyong;Seo, Jinwook
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.251-267
    • /
    • 2015
  • The Indian Buffet Process is a stochastic process on equivalence classes of binary matrices having finite rows and infinite columns. The Indian Buffet Process can be imposed as the prior distribution on the binary matrix in an infinite feature model. We describe the derivation of the Indian buffet process from a finite feature model, and briefly explain the relation between the Indian buffet process and the beta process. Using a Gaussian linear model, we describe three algorithms: Gibbs sampling algorithm, Stick-breaking algorithm and variational method, with application for finding features in image data. We also illustrate the use of the Indian Buffet Process in various type of analysis such as dyadic data analysis, network data analysis and independent component analysis.