• 제목/요약/키워드: sterol regulatory element-binding protein 2

검색결과 105건 처리시간 0.02초

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

Anti-adipogenic effect of the flavonoids through the activation of AMPK in palmitate (PA)-treated HepG2 cells

  • Rajan, Priyanka;Natraj, Premkumar;Ranaweera, Sachithra S.;Dayarathne, Lakshi A.;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.4.1-4.15
    • /
    • 2022
  • Background: Flavonoids are natural polyphenols found widely in citrus fruit and peel that possess anti-adipogenic effects. On the other hand, the detailed mechanisms for the antiadipogenic effects of flavonoids are unclear. Objectives: The present study observed the anti-adipogenic effects of five major citrus flavonoids, including hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on AMP-activated protein kinase (AMPK) activation in palmitate (PA)-treated HepG2 cells. Methods: The intracellular lipid accumulation and triglyceride (TG) contents were quantified by Oil-red O staining and TG assay, respectively. The glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) assay. The levels of AMPK, acetyl-CoA carboxylase (ACC), and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, and levels of sterol regulatory element-binding protein 2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) expression were analyzed by Western blot analysis. The potential interaction between the flavonoids and the γ-subunit of AMPK was investigated by molecular docking analysis. Results: The flavonoid treatment reduced both intracellular lipid accumulation and TG content in PA-treated HepG2 cells significantly. In addition, the flavonoids showed increased 2-NBDG uptake in an insulin-independent manner in PA-treated HepG2 cells. The flavonoids increased the AMPK, ACC, and GSK3β phosphorylation levels and decreased the SREBP-2 and HMGCR expression levels in PA-treated HepG2 cells. Molecular docking analysis showed that the flavonoids bind to the CBS domains in the regulatory γ-subunit of AMPK with high binding affinities and could serve as potential AMPK activators. Conclusion: The overall results suggest that the anti-adipogenic effect of flavonoids on PA-treated HepG2 cells results from the activation of AMPK by flavonoids.

Effects of Rosa multiflora root extract on adipogenesis and lipogenesis in 3T3-L1 adipocytes and SD rat models

  • Kyoung Kon Kim;Hye Rim Lee;Sun Min Jang;Tae Woo Kim
    • Nutrition Research and Practice
    • /
    • 제18권2호
    • /
    • pp.180-193
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity is a major cause of metabolic disorders; to prevent obesity, research is ongoing to develop natural and safe ingredients with few adverse effects. In this study, we determined the anti-obesity effects of Rosa multiflora root extract (KWFD-H01) in 3T3-L1 adipocytes and Sprague-Dawley (SD) rats. MATERIALS/METHODS: The anti-obesity effects of KWFD-H01in 3T3-L1 adipocytes and SD rats were examined using various assays, including Oil Red O staining, gene expression analyses, protein expression analyses, and blood biochemical analyses. RESULTS: KWFD-H01 reduced intracellular lipid accumulation and inhibited the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBPα), sterol regulatory element-binding transcription factor 1 (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in 3T3-L1 cells. KWFD-H01 also reduced body weight, weight gain, and the levels of triglycerides, total and LDL-cholesterol, glucose, and leptin, while increasing high-density lipoprotein-cholesterol and adiponectin in SD rats. PPARγ, C/EBPα, SREBP-1c, ACC, and FAS protein expression was inhibited in the epididymal fat of SD rats. CONCLUSION: Overall, these results confirm the anti-obesity effects of KWFD-H01 in 3T3-L1 adipocytes and SD rats, indicating their potential as baseline data for developing functional health foods or pharmaceuticals to control obesity.

Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells

  • Quan, Hai Yan;Kim, Do Yeon;Chung, Sung Hyun
    • BMB Reports
    • /
    • 제46권4호
    • /
    • pp.207-212
    • /
    • 2013
  • The main purpose of this study is to examine the effect of caffeine on lipid accumulation in human hepatoma HepG2 cells. Significant decreases in the accumulation of hepatic lipids, such as triglyceride (TG), and cholesterol were observed when HepG2 cells were treated with caffeine as indicated. Caffeine decreased the mRNA level of lipogenesis-associated genes (SREBP1c, SREBP2, FAS, SCD1, HMGR and LDLR). In contrast, mRNA level of CD36, which is responsible for lipid uptake and catabolism, was increased. Next, the effect of caffeine on AMP-activated protein kinase (AMPK) signaling pathway was examined. Phosphorylation of AMPK and acetyl-CoA carboxylase were evidently increased when the cells were treated with caffeine as indicated for 24 h. These effects were all reversed in the presence of compound C, an AMPK inhibitor. In summary, these data indicate that caffeine effectively depleted TG and cholesterol levels by inhibition of lipogenesis and stimulation of lipolysis through modulating AMPK-SREBP signaling pathways.

Hypocholesterolemic metabolism of dietary red pericarp glutinous rice rich in phenolic compounds in mice fed a high cholesterol diet

  • Park, Yongsoon;Park, Eun-Mi;Kim, Eun-Hye;Chung, Ill-Min
    • Nutrition Research and Practice
    • /
    • 제8권6호
    • /
    • pp.632-637
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The purpose of the current study was to investigate the effect of red pericarp glutinous rice rich in polyphenols (Jakwangchalbyeo, red rice) on serum and hepatic levels of cholesterol and hepatic protein expression linked to synthesis and degradation of cholesterol in a hypercholesterolemic mice diet as compared with brown rice. MATERIALS/METHODS: C57BL/6 male mice were randomly divided into four groups (n = 5 each), which were fed different diets for a period of 12 weeks: American Institute of Nutrition (AIN)-93G diet, AIN-93G diet with 2% cholesterol, brown rice with 2% cholesterol, or red rice with 2% cholesterol. RESULT: Consumption of red rice resulted in a significant decrease in serum level of low-density lipoprotein cholesterol and hepatic levels of triglyceride and total-cholesterol. Expression of acyl-coenzyme A cholesterol acyltransferase-2 (ACAT-2), sterol regulatory element binding protein-2 (SREBP-2), and 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase was decreased, while expression of phosphorylated adenosine monophosphate activated protein kinase (p-AMPK)/AMPK ratio, cholesterol 7-${\alpha}$-hydroxylase (CYP7a1), and sterol 12-${\alpha}$-hydroxylase (CYP8b1) was increased in mice fed red rice. Brown rice had similar effects on cholesterol metabolism, but the effect of red rice was significantly greater than that of brown rice. CONCLUSIONS: The current study suggested that red rice had a hypocholesterolemic effect by lowering hepatic cholesterol synthesis through ACAT-2, HMG-CoA reductase, and SREBP-2, and by enhancing hepatic cholesterol degradation through CYP7a1 and CYP8b1 in mice fed a hypercholesterolemic diet.

감귤피 효소적 추출물의 지방세포에서의 항비만 효과 (Anti-obesity effects of an enzymatic extract of mandarin (Citrus unshiu) peel in 3T3-L1 adipocytes)

  • 장예빈;강희주;김주상;이승홍
    • 한국식품과학회지
    • /
    • 제53권2호
    • /
    • pp.149-153
    • /
    • 2021
  • 본 연구는 감귤 가공공정 중에 발생하는 가공부산물인 감귤피의 산업적 이용성 및 유용성을 증대시키고자 효소적 추출법을 적용하여 추출물을 제조하고 항비만 활성을 측정하였다. 감귤피 효소적 추출물(MPCE)의 폴리페놀 함량은 이전의 연구에서 보고한 유기용매 추출물보다 높은 함량을 나타내었다. MPCE의 항비만 활성을 알아보기 위해 지방세포 분화억제에 미치는 영향을 확인한 결과 MPCE는 농도 의존적으로 지방세포의 분화 및 지방축적을 감소시켰으며 이는 세포독성에 의한 것이 아님을 세포생존율 측정을 통해 확인하였다. 또한 MPCE는 adipogenesis 관련 전사인자인 C/EBPα, SREBP-1, PPARγ, FABP4의 단백질 발현을 감소시켰다. 이러한 결과들을 통해 MPCE는 adipogenesis 관련 전사인자의 단백질 발현 억제하여 지방세포의 분화 및 지방축적을 억제하였으며, 이를 통해 항비만 효과를 나타낸다는 것을 확인하였다. 따라서 MPCE는 비만 예방 효능을 가진 기능성 식품 소재로서의 활용 가치가 있는 것으로 판단되며, 보다 명확한 항비만 효능을 확인하기 위해 추후 동물 실험 등에 대한 연구가 필요할 것으로 생각된다.

백출과 양춘사 추출 혼합물의 항콜레스테롤 효과 및 기전 연구 (Anti-cholesterol Effects and Molecular Mechanism Study of Mixture of Atractylodes Macrocephala and Amomum Villosum Extracts)

  • 김하림;김예슬;권강범;정현종
    • 동의생리병리학회지
    • /
    • 제36권5호
    • /
    • pp.181-186
    • /
    • 2022
  • Atractylodes macrocephala (AM) and Amomum villosum (AV) are the most common herbs in Korean Medicine to treat digestive diseases. In this study, we investigated the cholesterol lowering effects of mixtures of AM and AV extracts on high cholesterol diet (HCD) induced dyslipidemia mouse model. We classified animals into six different groups; Group 1: Normal diet, Group 2: HCD, Group 3: AV extracts : AM extracts (1:1) (200 mg/kg) + HCD, Group 4: AV extracts : AM extracts (1:2) (200 mg/kg) + HCD, Group 5: AV extracts : AM extracts (1:3) (200 mg/kg) + HCD, Group 6: Simvastatin 40 mg/kg + HCD. After 4 weeks of oral administration of respective drugs, we checked body, liver and epididymal fatweights along with liver and serum triacylglyceride (TG) concentration, total and low density lipoprotein (LDL) cholesterol in serum. Moreover, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), LDL receptor (LDLR), and sterol regulatory element-binding protein 2 (SREBP2) were detected by RT PCR or western blot analysis. The overall results showed that mixtures of AM and AV extracts inhibited HCD-induced increases of total cholesterol and LDL cholesterol in serum. Those effects seem to be caused by AM and AV extracts through inhibition of HMGCR expression. And thus blood cholesterol is induced into the liver by increasing LDLR expression, which is regulated by SREBP2 transcrption factor. The cholesterol lowering effects and mechanism of mixtures of AM and AV extracts was similar to the statin. We have identified the potential mixtures of AM and AV extracts as a new treatment for dyslipidemia.

Induction of Lipin1 by ROS-Dependent SREBP-2 Activation

  • Seo, Kyuhwa;Shin, Sang Mi
    • Toxicological Research
    • /
    • 제33권3호
    • /
    • pp.219-224
    • /
    • 2017
  • Lipin1 was identified as a phosphatidate phosphatase enzyme, and it plays a key role in lipid metabolism. Since free radicals contribute to metabolic diseases in the liver, this study investigated the effects of free radicals on the regulation of Lipin1 expression in Huh7 and AML12 cells. Hydrogen peroxide induced mRNA and protein expression of Lipin1 in Huh7 cells, which was assayed by quantitative RT-PCR and immunoblotting, respectively. Induction of Lipin1 by hydrogen peroxide was confirmed in AML12 cells. Hydrogen peroxide treatment significantly increased expression of sterol regulatory element-binding protein (SREBP)-2, but not SREBP-1. Moreover, nuclear translocation of SREBP-2 was detected after hydrogen peroxide treatment. Hydrogen peroxide-induced Lipin1 or SREBP-2 expression was significantly reduced by N-acetyl-$\small{L}$-cysteine treatment, indicating that reactive oxygen species (ROS) were implicated in Lipin1 expression. Next, we investigated whether the hypoxic environments that cause endogenous ROS production in mitochondria in metabolic diseases affect the expression of Lipin1. Exposure to hypoxia also increased Lipin1 expression. In contrast, pretreatment with antioxidants attenuated hypoxia-induced Lipin1 expression. Collectively, our results show that ROS activate SREBP-2, which induces Lipin1 expression.

Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/high-fructose diet-fed mice

  • Park, Miey;Yoo, Jeong-Hyun;Lee, You-Suk;Park, Eun-Jung;Lee, Hae-Jeung
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.350-361
    • /
    • 2020
  • Background: Black ginseng (BG) is a type of Korean ginseng prepared by steaming and drying raw ginseng to improve the saponin content. This study examined the effects of BG on nonalcoholic fatty liver disease (NAFLD) in HepG2 cells and diet-induced obese mice. Methods: HepG2 cells were treated with free fatty acids to induce lipid accumulation before supplementation with BG. NAFLD-induced mice were fed different doses (0.5%, 1%, and 2%) of BG for 8 weeks. Results: BG significantly reduced lipid accumulation and expression of lipogenic genes, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein-1c, and fatty acid synthase in HepG2 cells, and the livers of mice fed a 45% high-fat diet with 10% fructose in the drinking water (HFHF diet). BG supplementation caused a significant reduction in levels of aspartate aminotransferase and alanine aminotransferase, while antioxidant enzymes activities were significantly increased in 45% high-fat diet with 10% fructose in the drinking water diet-fed mice. Expression of proliferator-activated receptor alpha and carnitine palmitoyltransferase I were upregulated at the transcription and translation levels in both HepG2 cells and diet-induced obese mice. Furthermore, BG-induced phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase in both models, suggesting its role in AMP-activated protein kinase activation and the acetyl CoA carboxylase signaling pathway. Conclusion: Our results indicate that BG may be a potential therapeutic agent for the prevention of NAFLD.

LXR 고아핵수용체 관련 신호 억제를 통한 연교의 sterol regulatory element-binding protein-1c 조절 (Forsythiae suspensa regulates SREBP-1c signaling pathway as mediated with LXR alpha nuclear orphan receptor)

  • 김영은;박선동;김영우
    • 대한한의학방제학회지
    • /
    • 제30권3호
    • /
    • pp.137-143
    • /
    • 2022
  • Objectives : Brain-Liver axis is an important target of the chronic human diseases. Hepatic steatosis is one of the most famous disorders in the chronic diseases. This study investigated the moderating effect of beneficial herbs on the fat accumulation, which is mediated by the LXR alpha-SREBP-1c signaling pathway. Methods : In order to confirm the SREBP-1c inhibitory effect, we performed immonoblotting ananlysis using HepG2 cells and Huh 7 cells treated by T0901317, the ligand of LXRα. Results : Forsythiae suspensa water extract (FSE) was not cytotoxicity in cell lines. FSE inhibited SREBP-1c protein expression in HepG2 and Huh7 cells induced by T0901317. In addition, FSE increased the phosphorylation of LKB1, which is associated with LXR-related pathway in HepG2 and Huh 7 cells. Conclusions : These results showed that FSE activated LKB1 to suppress SREBP-1c, which protects the cells against oxidative stress.