• Title/Summary/Keyword: stereoscopic image

Search Result 426, Processing Time 0.025 seconds

Region Selective Transmission Method of MMT based 3D Point Cloud Content (MMT 기반 3차원 포인트 클라우드 콘텐츠의 영역 선별적 전송 방안)

  • Kim, Doohwan;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.25-35
    • /
    • 2020
  • Recently, the development of image processing technology, as well as hardware performance, has been continuing the research on 3D point processing technology that provides users with free viewing angle and stereoscopic effect in various fields. Point cloud technology, which is a type of representation of 3D point, has attracted attention in various fields because it can acquired/expressed point precisely. However, since Hundreds of thousands, millions of point are required to represent one 3D point cloud content, there is a disadvantage that a larger amount of storage space is required than a conventional 2D content. For this reason, the MPEG (Moving Picture Experts Group), an international standardization organization, is continuing to research how to efficiently compress, store, and transmit 3D point cloud content to users. In this paper, a V-PCC bitstream generated by a V-PCC (Video-based Point Cloud Compression) encoder proposed by the MPEG-I (Immersive) group is composed of an MPU (Media Processing Unit) defined by the MMT. In addition, by extending the signaling message defined in the MMT standard, a parameter for a segmented transmission method of the 3D point cloud content by area and quality parameters considering the characteristic of the 3D point cloud content, so that the quality parameters can be selectively determined according to the user's request. Finally, in this paper, we verify the result through design/implementation of the verification platform based on the proposed technology.

View Synthesis Error Removal for Comfortable 3D Video Systems (편안한 3차원 비디오 시스템을 위한 영상 합성 오류 제거)

  • Lee, Cheon;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.36-42
    • /
    • 2012
  • Recently, the smart applications, such as smart phone and smart TV, become a hot issue in IT consumer markets. In particular, the smart TV provides 3D video services, hence efficient coding methods for 3D video data are required. Three-dimensional (3D) video involves stereoscopic or multi-view images to provide depth experience through 3D display systems. Binocular cues are perceived by rendering proper viewpoint images obtained at slightly different view angles. Since the number of viewpoints of the multi-view video is limited, 3D display devices should generate arbitrary viewpoint images using available adjacent view images. In this paper, after we explain a view synthesis method briefly, we propose a new algorithm to compensate view synthesis errors around object boundaries. We describe a 3D warping technique exploiting the depth map for viewpoint shifting and a hole filling method using multi-view images. Then, we propose an algorithm to remove boundary noises that are generated due to mismatches of object edges in the color and depth images. The proposed method reduces annoying boundary noises near object edges by replacing erroneous textures with alternative textures from the other reference image. Using the proposed method, we can generate perceptually inproved images for 3D video systems.

  • PDF

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

Single-Camera Micro-Stereo 4D-PTV (단일카메라 마이크로 스테레오 4D-PTV)

  • Doh, Deog-Hee;Cho, Young-Beom;Lee, Jae-Min;Kim, Dong-Hyuk;Jo, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1087-1092
    • /
    • 2010
  • A micro 3D-PTV system has been constructed using a single camera system. Two viewing holes were created behind the object lens of the microscopic system to construct a stereoscopic viewing image. A hybrid recursive PTV algorithm was used. A concept of epipolar line was adopted to eliminate many spurious candidates. Three-dimensional velocity vector fields were obtained by calculating the three-dimensional displacements of particles that were identified as being identical. The system consists of a laser light source (Ar-ion, 500 mW), one high-definition camera ($1028{\times}1024$ pixels, 500 fps), a circular plate with two viewing holes, and a host computer. The performance of the developed algorithm was tested using artificial images. The characteristic of the vector recovery ratio was investigated for the particle numbers. A micro backward-facing step channel ($H{\times}h{\times}W:\;36{\mu}m{\times}70{\mu}m{\times}3000{\mu}m$) was measured using the developed measurement system. The results were in good qualitative agreement with other results.

Modeling of Visual Attention Probability for Stereoscopic Videos and 3D Effect Estimation Based on Visual Attention (3차원 동영상의 시각 주의 확률 모델 도출 및 시각 주의 기반 입체감 추정)

  • Kim, Boeun;Song, Wonseok;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.609-620
    • /
    • 2015
  • Viewers of videos are likely to absorb more information from the part of the screen that attracts visual attention. This fact has led to the visual attention models that are being used in producing and evaluating videos. In this paper, we investigate the factors that are significant to visual attention and the mathematical form of the visual attention model. We then estimated the visual attention probability using the statistical design of experiments. The analysis of variance (ANOVA) verifies that the motion velocity, distance from the screen, and amount of defocus blur affect human visual attention significantly. Using the response surface modeling (RSM), we created a visual attention score model that concerns the three factors, from which we calculate the visual attention probabilities (VAPs) of image pixels. The VAPs are directly applied to existing gradient based 3D effect perception measurement. By giving weights according to our VAPs, our algorithm achieves more accurate measurement than the existing method. The performance of the proposed measurement is assessed by comparing them with subjective evaluation as well as with existing methods. The comparison verifies that the proposed measurement outperforms the existing ones.

A Development of a Mixed-Reality (MR) Education and Training System based on user Environment for Job Training for Radiation Workers in the Nondestructive Industry (비파괴산업 분야 방사선작업종사자 직장교육을 위한 사용자 환경 기반 혼합현실(MR) 교육훈련 시스템 개발)

  • Park, Hyong-Hu;Shim, Jae-Goo;Park, Jeong-kyu;Son, Jeong-Bong;Kwon, Soon-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2021
  • This study was written to create educational content in non-destructive fields based on Mixed Reality. Currently, in the field of radiation, there is almost no content for educational Mixed Reality-based educational content. And in the field of non-destructive inspection, the working environment is poor, the number of employees is often 10 or less for each manufacturer, and the educational infrastructure is not built. There is no practical training, only practical training and safety education to convey information. To solve this, it was decided to develop non-destructive worker education content based on Mixed Reality. This content was developed based on Microsoft's HoloLens 2 HMD device. It is manufactured based on the resolution of 1280 ⁎ 720, and the resolution is different for each device, and the Side is created by aligning the Left, Right, Bottom, and TOP positions of Anchor, and the large image affects the size of Atlas. The large volume like the wallpaper and the upper part was made by replacing it with UITexture. For UI Widget Wizard, I made Label, Buttom, ScrollView, and Sprite. In this study, it is possible to provide workers with realistic educational content, enable self-directed education, and educate with 3D stereoscopic images based on reality to provide interesting and immersive education. Through the images provided in Mixed Reality, the learner can directly operate things through the interaction between the real world and the Virtual Reality, and the learner's learning efficiency can be improved. In addition, mixed reality education can play a major role in non-face-to-face learning content in the corona era, where time and place are not disturbed.