• Title/Summary/Keyword: stereo camera

Search Result 609, Processing Time 0.021 seconds

Face Recognition Robust to Pose Variations (포즈 변화에 강인한 얼굴 인식)

  • 노진우;문인혁;고한석
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.63-69
    • /
    • 2004
  • This paper proposes a novel method for achieving pose-invariant face recognition using cylindrical model. On the assumption that a face is shaped like that of a cylinder, we estimate the object's pose and then extract the frontal face image via a pose transform with previously estimated pose angle. By employing the proposed pose transform technique we can increase the face recognition performance using the frontal face images. Through representative experiments, we achieved an increased recognition rate from 61.43% to 94.76% by the pose transform. Additionally, the recognition rate with the proposed method achieves as good as that of the more complicated 3D face model.

Post-earthquake building safety evaluation using consumer-grade surveillance cameras

  • Hsu, Ting Y.;Pham, Quang V.;Chao, Wei C.;Yang, Yuan S.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • This paper demonstrates the possibility of evaluating the safety of a building right after an earthquake using consumer-grade surveillance cameras installed in the building. Two cameras are used in each story to extract the time history of interstory drift during the earthquake based on camera calibration, stereo triangulation, and image template matching techniques. The interstory drift of several markers on the rigid floor are used to estimate the motion of the geometric center using the least square approach, then the horizontal interstory drift of any location on the floor can be estimated. A shaking table collapse test of a steel building was conducted to verify the proposed approach. The results indicate that the accuracy of the interstory drift measured by the cameras is high enough to estimate the damage state of the building based on the fragility curve of the interstory drift ratio. On the other hand, the interstory drift measured by an accelerometer tends to underestimate the damage state when residual interstory drift occurs because the low frequency content of the displacement signal is eliminated when high-pass filtering is employed for baseline correction.

A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System (POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교)

  • Jae Kwon Eem
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

Visual Sensing of the Light Spot of a Laser Pointer for Robotic Applications

  • Park, Sung-Ho;Kim, Dong Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.216-220
    • /
    • 2018
  • In this paper, we present visual sensing techniques that can be used to teach a robot using a laser pointer. The light spot of an off-the-shelf laser pointer is detected and its movement is tracked on consecutive images of a camera. The three-dimensional position of the spot is calculated using stereo cameras. The light spot on the image is detected based on its color, brightness, and shape. The detection results in a binary image, and morphological processing steps are performed on the image to refine the detection. The movement of the laser spot is measured using two methods. The first is a simple method of specifying the region of interest (ROI) centered at the current location of the light spot and finding the spot within the ROI on the next image. It is assumed that the movement of the spot is not large on two consecutive images. The second method is using a Kalman filter, which has been widely employed in trajectory estimation problems. In our simulation study of various cases, Kalman filtering shows better results mostly. However, there is a problem of fitting the system model of the filter to the pattern of the spot movement.

Design and Implementation of an optical wavelength analyzer (CCD 카메라를 이용한 방사선 탐지기의 영상화 기술 연구)

  • Park, Sung-hoon;Park, Jong Won;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.811-813
    • /
    • 2013
  • In order to measure the radiation, there are types of sensors plurality. I was using the detection method and sensitivity of the CCD sensor in the scintillator and collimator in the sensor. In this study, in order to detect radiation using a CCD sensor with high resolution, by measuring the radiation dose by processing the visible light generated in response to radiation of the image coming into the CCD in the scintillator in space it is to present a pointer that radiation comes out most. It is intended to imaging by calculation of the distance to the radiation source to the implementation of the stereo camera system video in the future.

  • PDF

Simultaneous Tracking of Multiple Construction Workers Using Stereo-Vision (다수의 건설인력 위치 추적을 위한 스테레오 비전의 활용)

  • Lee, Yong-Ju;Park, Man-Woo
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • Continuous research efforts have been made on acquiring location data on construction sites. As a result, GPS and RFID are increasingly employed on the site to track the location of equipment and materials. However, these systems are based on radio frequency technologies which require attaching tags on every target entity. Implementing the systems incurs time and costs for attaching/detaching/managing the tags or sensors. For this reason, efforts are currently being made to track construction entities using only cameras. Vision-based 3D tracking has been presented in a previous research work in which the location of construction manpower, vehicle, and materials were successfully tracked. However, the proposed system is still in its infancy and yet to be implemented on practical applications for two reasons. First, it does not involve entity matching across two views, and thus cannot be used for tracking multiple entities, simultaneously. Second, the use of a checker board in the camera calibration process entails a focus-related problem when the baseline is long and the target entities are located far from the cameras. This paper proposes a vision-based method to track multiple workers simultaneously. An entity matching procedure is added to acquire the matching pairs of the same entities across two views which is necessary for tracking multiple entities. Also, the proposed method simplified the calibration process by avoiding the use of a checkerboard, making it more adequate to the realistic deployment on construction sites.

Depth Acquisition Techniques for 3D Contents Generation (3차원 콘텐츠 제작을 위한 깊이 정보 획득 기술)

  • Jang, Woo-Seok;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.15-21
    • /
    • 2012
  • Depth information is necessary for various three dimensional contents generation. Depth acquisition techniques can be categorized broadly into two approaches: active, passive depth sensors depending on how to obtain depth information. In this paper, we take a look at several ways of depth acquirement. We present not only depth acquisition methods using discussed ways, but also hybrid methods which combine both approaches to compensate for drawbacks of each approach. Furthermore, we introduce several matching cost functions and post-processing techniques to enhance the temporal consistency and reduce flickering artifacts and discomforts of users caused by inaccurate depth estimation in 3D video.

  • PDF

Depth Map Enhancement and Up-sampling Techniques of 3D Images for the Smart Media (스마트미디어를 위한 입체 영상의 깊이맵 화질 향상 및 업샘플링 기술)

  • Jung, Jae-Il;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • As the smart media becomes more popular, the demand for high-quality 3D images and depth maps is increasing. However, performance of the current technologies to acquire depth maps is not sufficient. The depth maps from stereo matching methods have low accuracy in homogeneous regions. The depth maps from depth cameras are noisy and have low-resolution due to technical limitations. In this paper, we introduce the state-of-the-art algorithms for depth map enhancement and up-sampling from conventional methods using only depth maps to the latest algorithms referring to both depth maps and their corresponding color images. We also present depth map enhancement algorithms for hybrid camera systems in detail.

  • PDF

Intelligent Balancing Control of Inverted Pendulum on a ROBOKER Arm Using Visual Information (영상 정보를 이용한 ROBOKER 팔 위의 역진자 시스템의 지능 밸런싱 제어 구현)

  • Kim, Jeong-Seop;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.595-601
    • /
    • 2011
  • This paper presents balancing control of inverted pendulum on the ROBOKER arm using visual information. The angle of the inverted pendulum placed on the robot arm is detected by a stereo camera and the detected angle is used as a feedback and tracking error for the controller. Thus, the overall closed loop forms a visual servoing control task. To improve control performance, neural network is introduced to compensate for uncertainties. The learning algorithm of radial basis function(RBF) network is performed by the digital signal controller which is designed to calculate floating format data and embedded on a field programmable gate array(FPGA) chip. Experimental studies are conducted to confirm the performance of the overall system implementation.

Global Localization of Mobile Robots Using Omni-directional Images (전방위 영상을 이용한 이동 로봇의 전역 위치 인식)

  • Han, Woo-Sup;Min, Seung-Ki;Roh, Kyung-Shik;Yoon, Suk-June
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.517-524
    • /
    • 2007
  • This paper presents a global localization method using circular correlation of an omni-directional image. The localization of a mobile robot, especially in indoor conditions, is a key component in the development of useful service robots. Though stereo vision is widely used for localization, its performance is limited due to computational complexity and its narrow view angle. To compensate for these shortcomings, we utilize a single omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Nodes around a robot are extracted by the correlation coefficients of CHL (Circular Horizontal Line) between the landmark and the current captured image. After finding possible near nodes, the robot moves to the nearest node based on the correlation values and the positions of these nodes. To accelerate computation, correlation values are calculated based on Fast Fourier Transforms. Experimental results and performance in a real home environment have shown the feasibility of the method.