• Title/Summary/Keyword: stepwise elimination (SE)

Search Result 2, Processing Time 0.017 seconds

Sensor array optimization techniques for exhaled breath analysis to discriminate diabetics using an electronic nose

  • Jeon, Jin-Young;Choi, Jang-Sik;Yu, Joon-Boo;Lee, Hae-Ryong;Jang, Byoung Kuk;Byun, Hyung-Gi
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.802-812
    • /
    • 2018
  • Disease discrimination using an electronic nose is achieved by measuring the presence of a specific gas contained in the exhaled breath of patients. Many studies have reported the presence of acetone in the breath of diabetic patients. These studies suggest that acetone can be used as a biomarker of diabetes, enabling diagnoses to be made by measuring acetone levels in exhaled breath. In this study, we perform a chemical sensor array optimization to improve the performance of an electronic nose system using Wilks' lambda, sensor selection based on a principal component (B4), and a stepwise elimination (SE) technique to detect the presence of acetone gas in human breath. By applying five different temperatures to four sensors fabricated from different synthetic materials, a total of 20 sensing combinations are created, and three sensing combinations are selected for the sensor array using optimization techniques. The measurements and analyses of the exhaled breath using the electronic nose system together with the optimized sensor array show that diabetic patients and control groups can be easily differentiated. The results are confirmed using principal component analysis (PCA).

Changes in the Physicochemical Characteristics and Triglyceride Molecular Species of Corn oil during Hydrogenation (수소첨가에 따른 옥수수유의 트리글리세리드 분자종 및 이화학적 특성의 변화)

  • Kim, Hyeon-Wee;Cha, Ik-Soo;Kim, Jin-Ho;Kim, Hyun-Suck;Park, Ki-Moon;Son, Se-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-642
    • /
    • 1993
  • Changes in the physicochemical characteristics and triglyceride molecular species of corn oil under the following condition of hydrogenation; temperature $180^{\circ}C,\;H_{2}$, pressure $2.0{\pm}0.3bar$, the amount of Ni catalyst 0.048%(Ni/oil by wt.) and agitation speed 300 rpm. The rate of hydrogenation, expressed as the reduction rate of the iodine value with respect to time, is first order and high (K>0.01). When the reduction rate of the iodine value was 39.9%, hydrogenation time was 30 min, 18:1 was highest(77.06%), thereafter that was decreased and 18:0 increased. In the triglyceride composition, OLL, LLL were reduced markedly in 10 min, thereafter reduced slightly. And PLO, PLL, OLO were eliminated in first 30 min. On the other hand, POO, PLS(CN52) and OOO, SLO(CN54) were increased sharply, and then that showed little change. The melting point(MP) of hydrogenated corn oil were $27.8^{\circ}C\;and\;44.1^{\circ}C$ after 20 min and 60 min, respectively. Trans isomer content increased to 46.8% during 40 mins of hydrogenation and then decreased insignificantly. The solid fat content were linearly increased with hydrogenation time. Accordingly, it is confirmed that this condition of hydrogenation was selective, preferential elimination of polyunsaturated fatty acid went stepwise and trans isomer was formed promotedly. These results suggest that fat modification techniques can be used for practical application.

  • PDF