• 제목/요약/키워드: step-mixing

검색결과 203건 처리시간 0.027초

구획실 내 가스연료 화재의 CO 농도에 대한 FDS 연소모델의 예측성능 평가 (Evaluation of the Prediction Performance of FDS Combustion Models for the CO Concentration of Gas Fires in a Compartment)

  • 백빛나;오창보;황철홍;윤홍석
    • 한국화재소방학회논문지
    • /
    • 제32권1호
    • /
    • pp.7-15
    • /
    • 2018
  • 구획실 내 프로판 가스화재에 대해 Fire Dynamics Simulator (FDS)를 이용한 수치계산을 수행하고 실험과의 비교를 통해 적용된 연소모델 예측성능을 평가하였다. 검토된 연소모델은 FDS v5.5.3의 혼합분율 연소모델과 FDS v6.6.3의 Eddy Dissipation Concept (EDC) 모델이며, EDC 모델에서 화학반응기구는 1-step Mixing Controlled, 2-step Mixing Controlled, 3-step Mixing Controlled 및 Mixing Controlled 반응과 유한화학반응이 혼합된 3-step Mixed 반응을 적용하였다. 구획실 내부의 온도에 대해서는 각 연소모델들 간의 예측성능 차이는 그다지 크지 않음을 확인하였다. 연소모델 차이에 의한 $O_2$$CO_2$ 농도에 대한 예측성능 차이보다는 CO에 대한 예측결과 차이가 크게 나타났다. CO 농도에 대해서는 EDC 3-step Mixing Controlled 모델이 가장 높게 예측하며 혼합분율 연소모델은 실험보다는 낮게 예측하였다. EDC 3-step Mixed 모델이 가장 예측성능이 좋았지만 EDC 2-step Mixing Controlled 모델도 충분히 합리적인 수준으로 예측하고 있음을 확인하였다. EDC 1-step Mixing Controlled 모델에 기존에 제안된 CO 수율을 적용할 경우 CO 농도에 대해서 너무 과소 예측하며 CO 예측 정확도를 높이기 위해 수율을 높이면 $CO_2$ 농도에 대한 합리적인 예측이 어려워지는 문제점이 있었다.

배합 공정이 실리카와 카본블랙으로 보강된 고무 배합물의 특성에 미치는 영향 (Influence of Mixing Procedure on Properties of Rubber Compounds Filled with Both Silica and Carbon Black)

  • 주창환;김동철;최성신
    • Elastomers and Composites
    • /
    • 제37권1호
    • /
    • pp.14-20
    • /
    • 2002
  • 실리카로 보강된 고무 배합물은 보강제의 분산이 나쁘기 때문에 카본 블랙으로 보강된 배합물에 비해 더 긴 배합 시간이 필요하다. 실리카와 카본 블랙으로 보강된 천연 고무 배합물에서 배합 공정이 물성에 미치는 영향을 연구하였다. 마스터뱃치(MB) 배합물의 최종 온도를 $150^{\circ}C$로 하였을 때, 실리카와 카본 블랙을 따로 투입하는 경우가 함께 투입하는 공정보다 배합 시간을 더 길게 가질 수 있었다. 실리카를 먼저 투입하는 것이 카본 블랙을 먼저 투입하는 것보다 배합 시간이 길었다. MB 배합 공정을 한 단계로 구성한 배합물과 두단계로 구성한 배합물을 비교하였다. 두 단계 공정으로 배합한 배합물의 스코치 시간이 한 단계 공정으로 만든 배합물의 스코치 시간보다 길었고 bound rubber 함량은 작았다. 두단계 공정으로 만든 가황물은 한단계 공정으로 만든 것에 비해 신율이 높고 인장 강도도 강하고 피로 특성도 우수한 것으로 나타났다.

Effect of 1,3-Diphenyl-guanidine (DPG) Mixing Step on the Properties of SSBR-silica Compounds

  • Lim, Seok-Hwan;Lee, Sangdae;Lee, Noori;Ahn, Byeong Kyu;Park, Nam;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제51권2호
    • /
    • pp.81-92
    • /
    • 2016
  • 1,3-Diphenylguanidine (DPG) is commonly used as a secondary accelerator which not only acts as booster of cure but also activating silanization reaction. The aim of this study is to increase the interaction between silica and rubber by using DPG. In this study, mixing was proceeded in two steps. The T-1 compound is mixed DPG with silica and silane coupling agent in the kneader at high temperature which is named as $1^{st}$ mixing step. T-3 compound is mixed DPG with curatives in the two-roll mill at low temperature which is named as $2^{nd}$ mixing step. The T-2 compound is mixed a half of DPG in $1^{st}$ mixing step and the remainder is mixed in $2^{nd}$ mixing step. Total DPG content was equal for all compounds. When DPG is mixed with silica, silane coupling agent during the $1^{st}$ mixing step, a decrease in cure rate and an increase in scorch time can be seen. This indicates that DPG is adsorbed on the surface of silica. during rubber processing. However, bound rubber content is increased and dynamic properties are improved. These results are due to the highly accelerated silanization reaction. However, there are no significant difference in 100%, 300% modulus.

혼합촉진장치 적용시 유동장 변화에 의한 탈황효율 연구 (A Study on the Desulfurization Efficiency as a Variation of Flow Field Applyed a Mixing Enhancement Apparatus)

  • 정진도;김장우;서문준
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.177-181
    • /
    • 2010
  • This paper has designed a mixing enhancement apparatus called Lobed-plate and Step-plate and comparatively calculated desulfurization efficiency of when its shape was changed. The parameters used at this time were the shape, SR ratio and the number of nozzles of the mixing enhancement apparatus and comparatively analyzed desulfurization efficiency according to these parameters. As a result, the Step-plate appeared as more highly by around 4% than Lobed-plate in desulfurization efficiency according to the shape of the mixing promotion apparatus, and when the desulfurization efficiency as a SR ratio is considered, it appeared highly by an average of 5% when the SR ratio is 3 rather than 2. As a result of comparing desulfurization efficiency by fixing the SR ratio and setting the number of nozzles as 4 pieces and 6 pieces, there was no big change in desulfurization efficiency when the SR ratio is 2, but it could be confirmed to improve by around 5% when the SR ratio is 3 when time passed 8 seconds.

Surimi-Based Imitation Crab의 가공공정에 대한 위해미생물 분석 (Analysis of Hazardous Microbes on the Processing of Surimi-Based Imitation Crab)

  • 김창남;천석조;노우섭;오두환
    • 한국식품위생안전성학회지
    • /
    • 제12권4호
    • /
    • pp.346-353
    • /
    • 1997
  • This study was undertaken to find out distribution and contamination sources of hazardous microbes through microbial hazard analysis on the processing steps of surimi-based imitation crab (SBIC). As a results of ananlysis of 9 hazardous microbes for 16 raw materials and 8 processing steps, no Samonella spp. and Escherichia coli were detected in all samples. Level and distribution of hazardous microbes in mixed color were similar to those of surimi. Changes of aerobic plate counts (APC), psychrotropic bacteria, coliforms, Staphylococcus aureus and Vibrio parahaemolyticus showed similar trends at different processing steps. Thermotrophic bacteria and aerobic sporeformers were not detected until mixing step and feeding step, respectively and not reduced after cooking step. According to the comparison of APC at each step, it was suggested that surimi, workers and silent cutter at mixing step, and mixed color, workers and bundler at packaging step were the major contamination sources of bacteria.

  • PDF

동제련 슬래그를 혼입한 모르타르의 강도 특성 연구 (The Study on Properties of Mortar with Copper Smelting Slag)

  • 박조범;지석원;서치호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.263-268
    • /
    • 2000
  • Recently, the recycling of the by-products was attempted to various fields. One of the major industry, the copper manufacturing industry produced a lot slags. in this study, the copper smelting slag was used to use practically application for the aggregate of concrete. To find the optimum mixing ratio of mortar with the copper smelting slag as substitution for sand, the mixing ratio was increased 1:2 to 1:5 step by step and every mixture was contained 5 steps sand substitutive ratio. The substitutive ratio of sand was increased 25% st대 by step from 0% to 100%. The result of this study was shown as follows. 1. In the every mixture, as the substitutive ratio was increased, the flow was decrease 3.64% from 18cm, and the unit content weigth was increased 5.5% in average. 2. The property of the strength was judged that it was more affected W/C and mixing ratio than the copper smelting slag.

  • PDF

Eddy Dissipation Concept 연소모델을 적용한 백드래프트 대와동모사 연구 (Large Eddy Simulation of Backdraft Using the Eddy Dissipation Concept Combustion Model)

  • 하수임;오창보
    • 한국화재소방학회논문지
    • /
    • 제33권5호
    • /
    • pp.48-54
    • /
    • 2019
  • 본 연구에서는 Eddy Dissipation Concept (EDC) 1-step 연소모델을 이용하여 백드래프트에 대한 대와동모사를 성공적으로 수행하였다. 기존 연구와는 달리 EDC 1-step의 유한화학반응에서 활성화에너지를 적절히 조절함으로써 백드래프트에 대한 예측이 가능하였다. EDC 1-step 연소모델을 이용한 예측결과는 Mixing-Controlled Fast Chemistry(MCFC) 연소모델의 예측결과와 비교 검토되었다. 얻어진 결과에서는 백드래프트 발생 시점을 제외하면 EDC 1-step과 MCFC 결과들은 매우 유사한 것을 확인하였고, 실험에서 얻어진 최고 압력값에 대해서도 합리적인 수준에서 예측하는 것은 알 수 있었다. 그러나 EDC 1-step 연소모델도 MCFC와 마찬가지로 백드래프트 전개과정의 첫 번째 압력 피크에 대해서는 예측하지 못하는 한계를 확인할 수 있었다.

좁은 채널 내부의 수직 혼합 경계층에 형성된 메탄-공기 에지-화염의 안정화 기초 실험 (A Fundamental Experiment on the Stabilization of a Methane-Air Edge Flame in a Cross-Flowing Mixing Layer in a Narrow Channel)

  • 이민정;김남일
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.527-534
    • /
    • 2009
  • Flame stabilization characteristics were experimentally investigated in a fuel-air cross flowing mixing layer. A combustor consists of a narrow channel of air steam and a cross flowing fuel. Depending on the flow rates of methane and air, flame can be stabilized in two modes. First is an attached flame which is formulated at the backward step where the methane and air streams meet. Second is a lifted-flame which is formulated within the mixing layer far down steam from backward step. The heights and flame widths of the lifted flames were measured. Flame shapes of the lifted flames were similar to an ordinary edge flame or a tribrachial flame, and their behavior could be explained with the theories of an edge flame. With the increase of the mixing time between fuel and air, the fuel concentration gradient decreases and the flame propagation velocity increases. Thus the flame is stabilized where the flow velocity is matched to the flame propagation velocity in spite of a significant disturbance in the fuel mixing and heat loss within the channel. This study provides many experimental results for a higher fuel concentration gradient, and it can also be helpful for the development and application of a smaller combustor.

Analysis of Ventilation Performance Using a Model Chamber

  • Kang Tae-Wook;Chang Tae-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.736-743
    • /
    • 2005
  • In this study, three different types of mechanical ventilation systems are compared based on their ventilation characteristics: tracer gas concentration decay characteristics, and ventilation effectiveness by calculating actual ventilation air flow rate. The experiments are performed by using a step-down method for measuring tracer gas. $CO_{2}$ gas, concentration in the model chamber. Application of a mixing factor, k, was used and measured values ranged from 0.68 to 0.77. The Type 2 ventilation system was found to have the highest ventilation effectiveness rather than the Types 1 and 3.

LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구 (Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation)

  • 김태진;서태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF