• Title/Summary/Keyword: step shape

Search Result 945, Processing Time 0.03 seconds

Detection of Defects on Repeated Multi-Patterned Images (반복되는 다수 패턴 영상에서의 불량 검출)

  • Lee, Jang-Hee;Yoo, Suk-In
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.386-393
    • /
    • 2010
  • A defect in an image is a set of pixels forming an irregular shape. Since a defect, in most cases, is not easy to be modeled mathematically, the defect detection problem still resides in a research area. If a given image, however, composed by certain patterns, a defect can be detected by the fact that a non-defect area should be explained by another patch in terms of a rotation, translation, and noise. In this paper, therefore, the defect detection method for a repeated multi-patterned image is proposed. The proposed defect detection method is composed of three steps. First step is the interest point detection step, second step is the selection step of a appropriate patch size, and the last step is the decision step. The proposed method is illustrated using SEM images of semiconductor wafer samples.

On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.701-717
    • /
    • 2006
  • In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, ${\ldots}$, etc.) or a stepped beam with one to three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step beam are also studied.

A study on Knowledge based-processing of information to shape cutting (형상 가공 정보의 지식 베이스 처리에 관한 연구)

  • 김희중;조우승;정재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.970-973
    • /
    • 1995
  • The proposal of this paper is the constructing of knowledge database with manufacturing information. This database contains characteristics of workpiece materials, cutting tools, NC machines, manufacturing processes, and work conditions. And all shape in the system are feature models such base plate, step, hole, pocket, boss, and slot. These information generate a final decision for machining process by the expert system.

  • PDF

Development of a shape measuring system by hand-eye robot (Hand-Eye Robot에 의한 형상계측 시스템의 개발)

  • 정재문;김선일;양윤모
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.586-590
    • /
    • 1990
  • In this paper we describe the shape measuring technique and system with a non-contractive sensor, composed of slit-ray projector and solid-state camera. For improving the accuracy and preventing measuring dead point, this sensor part is attached to the end of robot, and each sensing is executed after one step moving. By patching these sensing data, whole measuring data is constructed. The calibration between sensor and world coordinate is implemented through the specific calibration block by transformation matrix method. The result of experiment was satisfactory.

  • PDF

A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature (액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구)

  • Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.487-494
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of the present authors, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan, have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

3D Shape Recovery from Image Focus using Gaussian Process Regression (가우시안 프로세스 회귀분석을 이용한 영상초점으로부터의 3차원 형상 재구성)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • The accuracy of Shape From Focus (SFF) technique depends on the quality of the focus measurements which are computed through a focus measure operator. In this paper, we introduce a new approach to estimate 3D shape of an object based on Gaussian process regression. First, initial depth is estimated by applying a conventional focus measure on image sequence and maximizing it in the optical direction. In second step, input feature vectors consisting of eginvalues are computed from 3D neighborhood around the initial depth. Finally, by utilizing these features, a latent function is developed through Gaussian process regression to estimate accurate depth. The proposed approach takes advantages of the multivariate statistical features and covariance function. The proposed method is tested by using image sequences of various objects. Experimental results demonstrate the efficacy of the proposed scheme.

A Non-contact Shape Measuring System Using an Artificial Neural Network

  • Jeong, Woo-tae;Lee, Myung-Chan;Koh, Duck-joon;Cho, Hyung-suck
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.399-404
    • /
    • 1996
  • We developed a non-contact shape measuring device using computer image processing technology. We present a method of calibrating a CCD video camera and a laser range finder which is the most important step toward making an accurate shape measuring system. An artificial neural network is used for the calibration. Our measurement system is composed of a semiconductor laser. a CCD video camera, a personal computer, and a linear motion table. We think that the developed system could be used for measuring the change in shape of the spent nuclear fuel rod before and after irradiation which is one of the most important tasks for developing a better nuclear fuel. A radiation shield is suggested for the possible utilization of the range finder in radioactive environment.

  • PDF

Automatic Generation of Clustered Solid Building Models Based on Point Cloud (포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1349-1365
    • /
    • 2020
  • In recent years, in the fields of smart cities and digital twins, research on model generation is increasing due to the advantage of acquiring actual 3D coordinates by using point clouds. In addition, there is an increasing demand for a solid model that can easily modify the shape and texture of the building. In this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. Accordingly, in this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. In the first step, the ground points were removed through the planarity analysis of the point cloud. In the second step, building area was extracted from the ground removed point cloud. In the third step, detailed structural area of the buildings was extracted. In the fourth step, the shape of 3D building models with 3D coordinate information added to the extracted area was created. In the last step, a 3D building solid model was created by giving texture to the building model shape. In order to verify the proposed method, we experimented using point clouds extracted from unmanned aerial vehicle images using commercial software. As a result, 3D building shapes with a position error of about 1m compared to the point cloud was created for all buildings with a certain height or higher. In addition, it was confirmed that 3D models on which texturing was performed having a resolution of less than twice the resolution of the original image was generated.