• 제목/요약/키워드: step motors

검색결과 151건 처리시간 0.027초

A Study on the Compensation of the Inductance Parameters of Interior Permanent-Magnet Synchronous Motors Affected by the Magnet Size

  • Jang, Ik-Sang;Lee, Hyung-Woo;Kim, Won-Ho;Cho, Su-Yeon;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Ju
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.74-76
    • /
    • 2011
  • Interior permanent-magnet synchronous motors (IPMSMs) produce both magnetic and reluctance torques. The reluctance torque is due to the difference between the d- and q-axis inductances based on the geometric rotor structure. The steady-state performance analysis and precise control of the IPMSMs greatly depend on the accurate determination of the parameters. The three essential parameters of the IPMSMs are the armature flux linkage of the permanent magnet, the d-axis inductance, and the q-axis inductance. In the basic design step of an IPMSM, the inductance parameters are very important for determining the motor characteristics, such as the input voltage, torque, and efficiency. Thus, it is very important to accurately estimate the values of the motor inductances. The inductance parameters of IPMSMs have nonlinear characteristics along the magnet size because the iron core is saturated by the magnet and armature reaction fluxes. In this study, the inductance parameters were calculated using both the magnetic-equivalent-circuit method and the finite-element method (FEM). Then the calculated parameters were compensated by the saturation coefficient function, which was also calculated via the magnetic-equivalent-circuit method and FEM.

궤적 오차를 제거한 4축 CNC 제어기의 개발 (Development of 4-axis CNC Controller for Removing Trajectory Error)

  • 이치환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.406-409
    • /
    • 1997
  • An economical 4-axis CNC controller employing step motors is designed and implemented in this paper. By using the inherent ability of holding position of the motor, the CNC controller uses open-loop control for removing trajectory error and for a simple hardware. Each drive of axis has an 8-bit microprocessor 89C52 and a PC controls the axes and pendant by means of RS232C serial communication. Backlash is also compensated at the axis controller. While compensating the backlash, the feed rate becomes zero in order to minimize trajectory error. The trajectories of 16ms interval are computed on PC and are sent to motor drives. In the drives, the trajectories are linearly interpolated for 2ms interval. The developed CNC does not require add-on specific motion card on PC. From the experimental results, the validity of the CNC controller based on step motor is proved.

  • PDF

광학적 태양위치센서의 개발과 그 응용에 관한 연구 (A study on the design and the application of an optical sun-position sensor)

  • 신현덕;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.393-396
    • /
    • 1986
  • A Sun-Position Sensor using four phototransistors and shadow band device has been designed, and a Sun-Tracking System which tracks varying positions of the sun in elevation and azimuth axes has been built and its performance has been analyzed on the basis of indoor experiments and computer simulations. Two permanent-magnetic Step Motors (1.8.deg./step) for the main actuators and a CRC-800A kit with the Z-80CPU for the main controller have been selected to construct the Sun-Tracking System. It has been shown that the Sun-Position Sensor has about 0.5.deg. resolution and 25msec is required for the response of a single step input to reach its steady state.

  • PDF

수동형 셀프-베어링 스텝모터의 설계 및 성능해석 (Design and Analysis of a Passive-type Self-bearing Step Motor)

  • 곽호성;최동훈;김승종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.415-420
    • /
    • 2006
  • This paper introduces a new self-bearing motor which combines a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the theory of active magnetic bearings and therefore have some difficulties in design of the complicated flux distribution and control of the levitation force and the torque independently, the proposed self-bearing motor has a very simple and novel structure and operating principle. for the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. On the other hand, its rotation principle is quite similar to that of a conventional homopolar step motor. In this paper, we introduce the basic structure and the operating principle in detail, and show some results of FEM analysis to predict the performance of the proposed self-bearing motor and further, to get the optimal design parameters.

  • PDF

선형 펄스 전동기의 특성 해석 (The Charcteristics Analysis of Linear Pulse Motor)

  • 조윤현;이광호;김성도
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.249-256
    • /
    • 1999
  • This paper describes static characteristics analysis of linear pulse motor(LPM) with two permanent magnets. Linear pulse motors are finding a wide range of application for the Factory-Automation or the Office-Automation. Typically, LPM provides for a reliable and precise control of position, velocity, or acceleration without using a closed-loop system. Some of the advantages of LPMs are ease of control, step multiplication, static and dynamic positioning, and locking force. The flux density and thrust of LPM is computed by the FEM and magnetic equivalent circuits which considered the magnetic nonlinear phenomena. The result of characteristics analysis are shown as the flux, the air gap reluctance and the thrust. The velocity and position characteristics as a function of unit step input is measured. To estimate the unit step response charecteristic of LPM, the simulation results by Matlab and the experimental results is compared.

  • PDF

관성 센서를 이용한 투로터 시스템 제어에 관한 연구 (A Study on Control for the Two-Rotor System Using Inertial Sensors)

  • 장재훈;정은태;권성하
    • 제어로봇시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.190-194
    • /
    • 2013
  • This paper presents experimental results of the attitude control for a two-rotor system with 3-DOF(degree-of-freedom). Two DC motors are equipped at the two ends of a rectangular beam to generate lift force and the relation between motor voltage and lift force is found experimentally. And inertial sensors are mounted at the center of the beam to measure the roll angle and a complementary filter is designed to get the angle during DC motors driving. A controller with nonlinear compensation, integrator and state feedback to achieve asymptotic tracking for a step input and reject input disturbance is designed and experimented.

하이브리드 전기 자동차용 ISG의 진동 및 소음 개선에 관한 연구 (A Study on Reduction of Vibration and Noise of ISG for Hybrid Electric Vehicle)

  • 정재우;전성민;김종현;윤재섭;김도진;홍정표;김현;김기남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.796-797
    • /
    • 2011
  • 하이브리드 자동차의 Integrated Starter & Generator (ISG)는 기동 시 높은 토크를 발생시키면서 진동과 소음을 동반한다. 이러한 진동 및 소음은 차량의 품질 확보를 위하여 최소화 시켜야 할 필요가 있다. 본 논문에서는 매입형 영구자석 동기 전동기로 설계된 ISG의 진동 및 소음 저감에 관한 연구에 대하여 다룬다. ISG의 진동 및 소음 저감을 위하여 회전자 코어의 형상 최적설계, 슬롯 수 변경설계 그리고 회전자의 step skew를 적용시켜 각각의 설계방법이 ISG의 진동 및 소음에 미치는 영향을 해석과 실험을 통해 검증하였다.

  • PDF

BLDC 전동기의 전류맥동 보상을 위한 전류추정기 설계 (Design of current estimator for reducing of current ripple in BLDC motor)

  • 김명동;오태석;김일환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.339-341
    • /
    • 2006
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor current it is modeled by a neural network that is configured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which fast inputs and outputs are used to calculate the current output. Using the model, effective estimator to compensate the effects of disturbance has been designed. The effectiveness of the proposed current estimator is verified through experiments.

  • PDF

CPLD를 이용한 2상 스테핑 모터 드라이버의 성능개선 (Performance Improvement of the 2-phase Stepping Motor Driver with CPLD)

  • 오태석;전성구;김일환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권9호
    • /
    • pp.615-621
    • /
    • 2004
  • This paper describes the design of a 2-phase stepping motor driver using CPLD. The driver IC such as L297, which is mostly used has some difficulties in PWM current control because of the switching noise of power MOSFETs. The switching noise causes current ripple and acoustic noise. To reduce the switching noise, we designed a digital filter using VHDL. Also we designed constant current method for 1-2 phase(half step) excitation to reduce the torque ripple. Experimental results show the effectiveness of the proposed method. It is enabling further enhancements of stepping motor drive technology broadening the range of applications for the stepping motors.

솔레노이드의 고속 동작을 위한 모델링 및 제어 (Modeling and control of a solenoid for high-speed actuation)

  • 유승열;신동훈
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.1-5
    • /
    • 2011
  • Electronics in modern life have become more miniaturized and precise and new technology of electronic components has made these trends possible. The explosive demand of electronic components needs more high-speed and accurate performance of manufacturing processes. For high-speed actuation, solenoids, voice coil motors and piezo motors have been used. A solenoid actuator characterized by low price, available small size, and convenience is one of the main components of production equipments requiring compact and high-speed actuators. Since these actuators show millisecond order responsiveness, the improvement of 1~2msec is very important in industrial applications. In this paper, the mathematical model of the solenoid is formulated and simulated using SIMULINK$^{(R)}$. To verify the model, the responses for step input with open-loop control is obtained and compared with the simulation result. In order to improve the responsiveness, Hold voltage method is introduced and optimal value between spring constant and hold voltage is suggested.