• Title/Summary/Keyword: step growth model

Search Result 165, Processing Time 0.026 seconds

Crystallization of High Purity Ammonium Meta-Tungstate for production of Ultrapure Tungsten Metal

  • Choi, Cheong-Song
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.1-5
    • /
    • 1997
  • The growth mechanism of AMT(Ammonium Meta-Tungstate) crystal was interpreted as two-step model. The contribution of the diffusion step increased with the increase of temperature, crystal size, and supersaturation. The crystal size distribution from a batch cooling crystallizer was predicted by the numerical solution of a mathematical model which uses the kinetics of nucleation and crystal growth. Temperature control of a batch crystallizer was studied using Learning control algorithm. The purity of AMT crystal producted in this investigation was above 99.99%.

  • PDF

Development of the Substrate Utilization and Respiration Model by the Step Growth Concept (단계별 성장 개념의 기질 이용과 미생물 호흡모델 개발)

  • Kim, Youn Kwon;Seo, In Seok;Kim, Hong Suck;Kim, Ji Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.433-437
    • /
    • 2006
  • Recently, mathematical modeling for the activated sludge process is important to design and control of wastewater treatment plant. Nevertheless, there is a lack of information regarding the pathway of substrate utilization between external and internal substrates in biological nutrient removal (BNR). In this research, a new activated sludge model (step growth model) is proposed and compare with ASM No.3. This model structure is consist of five processes; aerobic storage, growth on external substrate and stored intercellular storage compounds (ISCs), endogenous respiration and aerobic respiration of ISCs. The predicted results by the step growth model were more good accordance with the results of oxygen utilization rate (OUR) and TCOD experiment than that of the ASM No.3.

Attitude Change Towards Self-Service Technology Adoption Using Latent Growth Modeling

  • Um, Taehyee;Chung, Namho
    • Journal of Smart Tourism
    • /
    • v.2 no.3
    • /
    • pp.5-15
    • /
    • 2022
  • As the utilization of technology in the tourism field becomes familiar, it greatly impacts people's tourism activities. These changes could also affect the behavior of tourists during the pandemic. To investigate consumers' adaptation to the self-service technology (SST) environment during the coronavirus disease of 2019 (COVID-19) pandemic, we adopted a model of absorptive capacity as the main framework for empirical research. To track the social effects of COVID-19, consumers' behavioral intentions for four different points in time are collected. The analysis was conducted using latent growth and structural equation modeling. We set the organizational and environmental characteristics as the first step of the model, with assimilation and trust as a middle step. Intention to use a kiosk is placed at the final step as an exploit. Findings indicate that organizational characteristics and environmental characteristics positively influenced assimilation and trust, except for environmental characteristics. Consumers' assimilation in SST encourages immediate intention to use a kiosk. Consumers' trust in kiosks positively impacts both immediate and continuance intention to use a kiosk during COVID-19.

An Analysis of Pattern Shift in the Epitaxial Growth of Silicon on (lll) Substrates ((lll) 기판의 실리콘 단결정층 성장시 발생하는 패턴 이동 현상의 분석)

  • Baek, Mun-Cheol;Jo, Gyeong-Ik;Song, Seong-Hae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 1984
  • A model analysis of pattern shift in the epitaxial growth of silicon on (111) substrates was performed. The growth rate anisotropy was considered as the most important affecting factor of pattern shift, and for the model establishment the off angle of the substrate and the process temperature were taken as the variables. We derived a theoretical equation of pattern shift by assuming the growth rate anisotropy as the trigonometric sine function of the off angle of the substrate and defining the growth rate anisotropy factor related to the process temperature. The pattern shift ratio calculated by this model had the same tendency with the experimental ones, which, however, were about twice greater than those. It was supposed that this discrepailcy was due to the second order affecting factor such as facetting and step broadening which had been exluded in model establishment.

  • PDF

Environmentally Assisted Crack Growth Behavior of SA508 Cl.3 Pressure Vessel Steel

  • Kim, Jun-Hwan;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.154-159
    • /
    • 1998
  • In order to assess the susceptibility of the environmentally assisted cracking(EAC) on SA508 Cl.3 steel in primary water condition, potential step test and slow strain rate test(SSRT) were conducted in a simulated crack tip condition. In this test, anodic dissolution was dominant in the crack tip environments. Proposed simple dissolution model is a modification of Hishida's anodic dissolution model at the plastic zone. One can predict actual crack growth rate with the smooth specimen through this model.

  • PDF

Reliability Design Based on System Performance-Cost Trade-off for Manufacturing facility

  • Hwang, Heung-Suk;Hwang, Gyu-Wan
    • International Journal of Reliability and Applications
    • /
    • v.2 no.4
    • /
    • pp.269-280
    • /
    • 2001
  • The objective of this paper is to provide a model for effective implementation of costing RAM management in the design and procurement of production facility considering the system cost-performance trade-off. This research proposes a two-step approach of costing RAM design and test of system RAM for production facility. In Step 1, a static model is proposed to find an initial system configuration to meet the required performance based on system RAM and LCC and analyzes the trade-off relationships between various factors of RAM and LCC. In the second Step, we developed time and failure truncated models for system reliability test and analysis. For the computational purpose, we developed computer programs and have shown the sample results. By the sample test run, the proposed model has shown the possibilities to provide a good method to analyze system performance evaluation for both design and operational phase, This model can be applied to a wide variety of systems not only for costing RAM of the production facilities but also for the other kinds of equipment.

  • PDF

Analysis of Fatigue Crack Growth with Thickness Ratio in Weldments (두께比를 考廬한 鎔接部의 疲勞龜裂傳播 解釋)

  • 차용훈;방한서;김덕중
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.69-77
    • /
    • 1996
  • This study aims to analyze the S. I. F. K value upon Mode I cracks in a finite-width plate of varying thickness, which is expressed in terms of width ratio ($\omega$), thickness ratio ($\beta$) and non-dimensional crack length (λ) by using the 2-dimensional finite element method. Then, by comparing the effectiveness of the results obtained by the two finite element methods, it is seen that the 2-dimensional finite element method can be used in order to analyse the S. I. F. K values upon a various thickness model. A model is developed in order to analyze the effects of initial residual stress upon the fatigue crack growth behavior in various thickness welded specimens. In this model, crack growth rate da/dN appears to be come small as the thickness ratio with the same ΔK is increased. Also, in the initial step, as ΔK is increased with crack growth rate is decreased and then increased because the repeated compressive residual stress retards crack growth rate.

  • PDF

An advanced single-particle model for C3S hydration - validating the statistical independence of model parameters

  • Biernacki, Joseph J.;Gottapu, Manohar
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.989-999
    • /
    • 2015
  • An advanced continuum-based multi-physical single particle model was recently introduce for the hydration of tricalcium silicate ($C_3S$). In this model, the dissolution and the precipitation events are modeled as two different yet simultaneous chemical reactions. Product precipitation involves a nucleation and growth mechanism wherein nucleation is assumed to happen only at the surface of the unreacted core and product growth is characterized via a two-step densification mechanism having rapid growth of a low density initial product followed by slow densification. Although this modeling strategy has been shown to nicely mimic all stages of $C_3S$ hydration - dissolution, dormancy (induction), the onset of rapid hydration, the transition to slow hydration and prolonged reaction - the major criticism is that many adjustable parameters are required. If formulated correctly, however, the model parameters are shown here to be statistically independent and significant.

Study on Anomalous Scaling Exponents for Molecular Thin Film Growth Using Surface Lateral Diffusion Model

  • Gong, Hye-Jin;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2237-2242
    • /
    • 2011
  • Anomalous scaling behaviors such as significantly large growth exponent (${\beta}$) and small reciprocal of dynamic exponent (1/z) values for many molecular crystalline thin films have been reported. In this study, the variation of scaling exponent values and consequent growth behaviors of molecular thin films were more quantitatively analysed using a (1+1)-dimensional surface lateral diffusion model. From these simulations, influence of step edge barriers and grain boundaries of molecular thin films on the various scaling exponent values were elucidated. The simulation results for the scaling exponents were also well consistent with the experimental data for previously reported molecular thin film systems.

A Model to Calibrate Expressway Traffic Forecasting Errors Considering Socioeconomic Characteristics and Road Network Structure (사회경제적 특성과 도로망구조를 고려한 고속도로 교통량 예측 오차 보정모형)

  • Yi, Yongju;Kim, Youngsun;Yu, Jeong Whon
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2013
  • PURPOSES : This study is to investigate the relationship of socioeconomic characteristics and road network structure with traffic growth patterns. The findings is to be used to tweak traffic forecast provided by traditional four step process using relevant socioeconomic and road network data. METHODS: Comprehensive statistical analysis is used to identify key explanatory variables using historical observations on traffic forecast, actual traffic counts and surrounding environments. Based on statistical results, a multiple regression model is developed to predict the effects of socioeconomic and road network attributes on traffic growth patterns. The validation of the proposed model is also performed using a different set of historical data. RESULTS : The statistical analysis results indicate that several socioeconomic characteristics and road network structure cleary affect the tendency of over- and under-estimation of road traffics. Among them, land use is a key factor which is revealed by a factor that traffic forecast for urban road tends to be under-estimated while rural road traffic prediction is generally over-estimated. The model application suggests that tweaking the traffic forecast using the proposed model can reduce the discrepancies between the predicted and actual traffic counts from 30.4% to 21.9%. CONCLUSIONS : Prediction of road traffic growth patterns based on surrounding socioeconomic and road network attributes can help develop the optimal strategy of road construction plan by enhancing reliability of traffic forecast as well as tendency of traffic growth.