• Title/Summary/Keyword: stentorin.

Search Result 3, Processing Time 0.011 seconds

Subcellular Localization of GTP Binding Protein in Stentor coeruleus

  • Park, Phun-Bum;Song, Pill-Soon
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.31-34
    • /
    • 2000
  • The heterotrichous ciliate Stentor coeruieus shows a step-up photophobic response to visible light In the previous paper, the existence of GTP-binding proteins was confirmed by using the antisera against the carboxy terminal decapeptide of transducin $\alpha$ subunit. The photoreceptor, stentorin, is localized in the pigment granule. If the immunoreactive G-protein directly interacts with the photoreceptor stentorin, the G-protein expected to be located in the pigment granule rather than plasma membrane. To elucidate the function of the immunoreactive G-protein, the localization of the G-protein in Stentor coeruleus was studied. The results suggest that this G-protein is located in the myoneme involved in the contraction and extension of the cell rather than in the pigment granule.

  • PDF

Molecular Aspects of Some Photobiological Receptors

  • Song, Pill-Soon
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.10-25
    • /
    • 1977
  • The photobiological receptors of phototactic, phototropic, and photomorphogenic responses of various organisms have been described in terms of spectroscopic, photophysical and photochemical properties which may be relevant in elucidating the energy transduct ion mechanism(s) in photobiology. The photoreceptors discussed include carotenoids, flavins, stentorin and phytochrome. Although the molecular modes of their photobiological action still remain largely unexplained, it is possible to suggest several primary molecul ar processes of the photoreceptors in eliciting responses of various organisms to light.

  • PDF

Effect of Electron Accepters on Step-up Photophobic Responses of Blephalisma japonicum

  • Youssef, Tareq;Angelini, Nicola;Gioffre, Domenico;Sgarbossa, Antonella;Lenci, Francesco
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • The photosensory ciliates Blepharisma japonicum and Stentor coeruleus use the hypericin-derived pigments blepharismin and stentorin, respectively, as photoreceptor chromophores. Fluorescence quenching studies have shown that the first excited singlet state of hypericin and the purified chromophores blepharismin and stentorin can be deactivated by electron transfer to an acceptor molecule with a suitable reducing potential [1,2]. This paper reports the result of a series of photobehavioral experiments performed with the aim to ascertain if the same electron accepters which quench the photoreceptor pigment fluorescence in vitro may also compete with the native acceptor molecule in its natural physiological environment. Individual cell trajectories were examined before and after light stimulation, in the presence and in the absence of potential "in vivo" electron accepters, with a microvideo-recording apparatus. Our data, on Blepharisma cells, showed that as the negative reduction potential of the electron acceptor increases, a pronounced decrease in cell photoresponsiveness was detected. A dramatic effect on cell photoresponsiveness was noticed in the presence of 1,4-benzoquinone that has the lowest negative reduction potential. Such an effect on the percentage of photoreacting cells was moderate in the case of 1,4-naphthoquinone, with a relatively higher negative reduction potential. In the presence of benzophenone, which has the highest negative reduction potential, no significant effect on photoreacting cells was noticed. Our results can support the hypothesis that in the pigment granules such a light-induced charge transfer from excited blepharismin to a suitable electron acceptor triggers sensory transduction processes in B. japonicum.

  • PDF