• Title/Summary/Keyword: stem biomass

Search Result 200, Processing Time 0.024 seconds

Effects of Fertilizer Treatment on the Growth Performance of 1-Year-Old Containerized Seedlings in Chionanthus retusus

  • Choi, Chung Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.586-596
    • /
    • 2020
  • Chionanthus retusus has been used for landscaping and gardening trees, foods and medicines. This study was carried out to analyze the effect of fertilization on the growth performance of container seedlings (1-year-old) in C. retusus. We used multifeed 19 (MF) as a fertilizer, and measured the height, root collar diameter (RCD), biomass, seedling quality index (SQI) chlorophyll contents and chlorophyll fluorescence of the seedlings. The findings of this paper showed that the height, RCD, H/D ratio, T/R ratio and the fresh and dry weight of seedlings increased after fertilization. The moisture content of the stem and root did not show any significant difference among fertilizations, except in the case of the leaf. Production distribution such as the dry weight ratio of leaves and the stem dry weight ratio of fertilized seedlings had a higher value than that of non-treatment. SQI was the highest in MF 1,000 mg/L and 2,000 mg/L treatment. Chlorophyll contents (SPAD value) also increased with the increase in fertilization concentrations. Chlorophyll fluorescence (Fv/Fm) showed the highest value of 0.8 in MF 2,000 mg/L treatment.

Biomass Production of Machilus thunbergii S. et Z. Stand at Bogil Island in Korea (후박나무림(林)의 물질생산량(物質生産量)에 관(關)하여)

  • Lee, Jyung Seok;Kim, Choon Sig
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.10-16
    • /
    • 1988
  • This study was carried out to estimate the aboveground-biomass of Machilus thunbergii, warm-temperature evergreen broad leaved tree, growing in the seashore near Bogil island located at the southern part of the Korean peninsula. The bark of M. thunbergii was used for medicine in the Korea. The results were summarized as follows : 1) The aboveground-biomass was 123.708 tons/ha and the biomass of branch bark greater than 3cm in branch diameter was 1/5 of total bark mass(8.095 tons/ha). Dry matter density was $1.77ha/m^3$ and leaf area index 8.08. 2) Net production of the stand was estimated as 16.051 tons/ha/yr and the leaf was the greatest, followed by stemwood, branchwood, stem-bark and branch-bark. 3) The net assimilation rate of the stand was 1.384 kg/kg/yr. The efficiency of leaves to produce stem was 0.451 kg/kg/yr and that of bark 0.051 kg/kg/yr. Biomass accumulation ratio was 7.707 kg/kg/yr.

  • PDF

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.

Required Mowing Power and Bale Density of Miscanthus × Giganteus for Field Biomass Harvesting using Different Methods

  • Jun, Hyeon-Jong;Choi, Il-Su;Kang, Tae-Gyoung;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.253-260
    • /
    • 2014
  • Purpose: This study investigated the harvesting properties of the giant miscanthus (Miscanthus ${\times}$ giganteus) to measure the required mowing power for different stem conditioning methods in order to shorten the drying time after mowing and the bale density so that the crop can be used as biomass in the winter season. Methods: The required mowing power and bale density were measured using a power measurement device, three different mower-conditioners, and a mid-sized round baler under different working speeds and conditioning methods. Results: For the various mower-conditioners, the average stem length from mowing was 0.86-0.91 m, and the available working speed was 1.6 m/s. The steel roller-type mower-conditioner showed better stem conditioning but could not mow over a working speed of 1.6 m/s. The required average power of the mower-conditioners varied from 23.8 kW for the steel roller-type rotary disk mower-conditioner with a working width of 2.4 m to 37.2 kW for the flail-type rotary disk mower-conditioner with a working width of 3.2 m at a working speed of 1.6 m/s. The bale densities were $155.8-172.2kg/m^3$. The highest bale density was measured for stems with no conditioning and a moisture content of 11.3% (d.b.) mowed by the rotary disk mower. The bale density was affected by the mowing method because of the low moisture content of the miscanthus stems. Conclusions: In terms of the working performance and conditioning statue, the steel roller-type mower-conditioner is a better choice at a working width of 2.4 m, while the flail finger-type mower-conditioner is better at a working width of 3.2 m. The type of mower-conditioner used for giant miscanthus harvesting should be determined by considering the harvest area, workable period, and working performance of a mower-conditioner and baler during the winter.

Biomass and Nutrient Distribution in Unthinned Korean White Pine Plantation in Chuncheon, Gangwon Province (강원도 춘천지역 비시업 잣나무림의 현존량과 양분분포)

  • Han, S.K.;Yi, M.J.;Kwon, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.77-91
    • /
    • 2014
  • This study was performed to provide basal data for effective nutrient control and productivity improvement of the Korean white pine stand. The objectives of this study were to investigate biomass and nutrient distribution in the unthinned Korean white pine plantation which is located in chuncheon, Gangwon province. Aboveground of the stand was estimated by the method of allometric relationship between tree component(kg) and diameter at breast height(DBH, cm). Total above ground biomass of the stand was 127.9t/ha. The relative ratio of stem, living branch, needle compared with total aboveground biomass were 57.9, 16.1, 12.7 and 13.3%, respectively. All nutrients were highly accumulated in needle and N had the largest proportion in the total amount of nutrient accumulation and followed by Ca, K, Mg, P. The amount of nutrient restoration in the Korean white pine was 6,852kg/ha for N, 1,916kg/ha for Ca, 889kg/ha for K, 518kg/ha for Mg, and 124kg/ha for P.

Effects of Forest Tending Works on Carbon Storage in a Pinus densiflora Stand

  • Kim, Choon-Sig;Son, Yo-Hwan;Lee, Woo-Kyun;Ha, Yeong-Cheol;Jeong, Jae-Yeob;Noh, Nam-Jin
    • Journal of Ecology and Environment
    • /
    • v.30 no.4
    • /
    • pp.281-285
    • /
    • 2007
  • We conducted research to determine the effects of forest tending works (FTW) on forest carbon (C) storage in Korean red pine forests by estimating changes in the quantity and distribution of stored organic C in an approximately 40-year-old red pine stand after FTW. We measured organic C storage (above- and belowground biomass C, forest floor C, and soil C at 50 cm depth) in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do before and after the forest was thinned from a density of 908 trees/ha to 367 trees/ha. The total C stored in tree biomass was 69.5 Mg C/ha before FTW and 38.6 Mg C/ha after FTW. The change in total C storage in tree biomass primarily resulted from the loss of 19.9 Mg C/ha stored in stem biomass after FTW. The total C pool in this red pine stand was 276 Mg C/ha before FTW and 245.1 Mg C/ha after FTW. Prior to FTW, 71.5% of the total C pool was stored in mineral soil, 25.2% in tree biomass, and 3.3% in the forest floor, where as after FTW 80.5% of the total C pool was stored in mineral soil, 15.7% in tree biomass and 3.7% in the forest floor. These results suggest that the development of site-specific tending techniques may be required to minimize the loss of tree biomass C storage capacity in red pine stands from FTW.

Analytical study of the properties of slow pyrolysis of biomass by-product of Indonesia (인도네시아 바이오매스 부산물의 저속 열분해 특성 분석)

  • Kang, Kieseop;Lee, Yongwoon;Park, Jinjae;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.61-64
    • /
    • 2013
  • Biomass is well known for organic resources photosynthesized by carbon dioxide water in the air and thus it can be widely used in the form of energy and production for various kinds of materials. Through pyrolysis, biomass can be transformed into solid(biochar), liquid(bio-oil), and combustible gas on the different condition of temperature and heating rate. That's why biomass can be practically used to preprocess and produce a variety of elements. This work is to analyze the characteristics of slow pyrolysis of three different kinds of biomass extracted from Indonesia. They showed similar moisture content and combinations of combustible matters and had quite a large discrepancy in the ash among them like 2.1 & of Bagasse, 91% of PKS, and 20.9% of Paddy Straw, respectively. yield of biochar, solid form of the biomass, steadily decreased when the temperature went up and that of bio-oil the highest at the temperature of 500 degrees Celsius. At the same temperature range, PKS bio-oil showed 51.4 % of yield and Bagasse had 55.1% while it turned out that Paddy straw showed the lowest yield of 37.2%. The apparent density was also measured to figure out the density of each product from the pyrolysis experiments at the temperature of 500 degrees Celsius. The result was like these; the density of biochar was 0.17, the lowest, and that of Tree stem was 1.3 when mixed by an equal amount of biochar and bio-oil.

  • PDF

Interactions among Carbon Isotope Discrimination, Water Use Efficiency and Nitrogen Nutrition in Wheat and Barley (밀과 보리에 있어서 탄소동위원소차별, 수분이용효율, 질소영양간의 상호작용)

  • Young Kil, Kang;Richard A., Richards;Anthony G., Condon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.318-331
    • /
    • 1996
  • Large and small seeds (44 and 22 mg per caryopsis) of a spring wheat (cv. Kulin) and a spring barley (cv. Skiff) were sown at two nitrogen rates (equivalent to 10 and 32 g m$^{-2}$ ) in well-watered pots under outdoor conditions to determine the effects of seed size and nitrogen (N) nutrition on water use efficiency (WUE) and carbon isotope discrimination ($\Delta$) and to evaluate interaction among $\Delta$, WUE and N nutrition in wheat and barley. Barley produced, on average, 105% more biomass (root+shoot dry weight) than wheat at stem elongation because of early vigor. By anthesis this difference had disappeared as wheat had 16% more biomass than barley which headed 3 days earlier. Compared to plants grown from small seed, plants grown from large seed had much greater biomass in wheat than in barley at stem elongation and anthesis. Higher N nutrition increased average biomass of wheat and barley by 40 and 31%, respectively, at anthesis. Barley had 35 and 20% greater WUE (biomass gained/transpiration) than wheat at stem elongation and anthesis, respectively, and 2.0 to 3.6% lower $\Delta$ in aboveground shoots depending on growth stages and plant parts than wheat which had a greater stomatal conductance than barley. Seed size had a variable effect on WUE and did not affected $\Delta$ values. Water use efficiency was not affected by N rate at stem elongation in wheat and barley whereas WUE was increased 2 and 7%, respectively, in wheat and barley at anthesis with increasing N from 10 to 32 g m$^{-2}$ . High N plants had about 2.5% lower $\Delta$ values regardless of growth stages than low N plants across species and seed sizes. Carbon isotope discrimination was negatively correlated with WUE at anthesis but not at stem elongation.

  • PDF

The effect of soil heterogeneity and container length on the growth of Populus euramericana in a greenhouse study

  • Rahman, Afroja;Meng, Loth;Han, Si Ho;Seo, Gi Chun;Jung, Mun Ho;Park, Byung Bae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Soil characteristics along with various container lengths have an important role in the early survival rate and growth of seedlings by influencing the seedling quality. This experiment was conducted to investigate the effect of container length and different soil mixtures on the growth of poplar in a greenhouse. Two types of soil, homogeneous vs. heterogeneous, were used along with two container lengths (30 vs. 60 cm). The heterogeneous soil was made by dividing 50% vermiculite from a mixture of 25% vermicompost and 25% nursery soil in volume. For the homogeneous soil, the above three soil types were mixed together. Populus euramericana clone cuttings were planted in late April, and then, the growth height, root collar diameter (RCD) and biomass were measured in August. The height of the poplar was not significantly affected by container length and soil type, but the RCD was significantly affected by soil type. Leaf and root biomass was higher at the long container than at the short container for both soil treatments, but stem biomass was lower at the heterogeneous soil than at the homogeneous soil treatment. Root to shoot biomass ratio was higher at the heterogeneous soil treatment than at the homogeneous soil treatment by 12%. In conclusion, heterogeneous soil along with a long container is suitable to increase the carbon allocation into the root.