• 제목/요약/키워드: stellar wind

검색결과 49건 처리시간 0.029초

Thermal and Hydrostatic Structure of the Protoplanetary Nebula : Influences of Wind Strengths, Nebular Mass Distributions, and Stellar Wind Velocity Laws

  • 윤영석
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.59.2-59.2
    • /
    • 2010
  • The structures of the protoplanetary nebula have been examined under various conditions of the stellar wind and the mass distribution of the nebula by assuming that the nebula is steady and geometrically thick. T Tauri stars commonly accompany with disks as well as the stellar wind. Therefore, the nebula around T Tauri stars should be influenced by the stellar wind. The results are summarized as follows ; The height of the geometrical surface of the nebula is suppressed by the dynamical pressure of the wind but depends very weakly on the wind strength. The surface becomes higher slightly when the wind strength becomes weaker. Furthermore, the dependency of the nebular height on the mass distribution of the nebula is also weak. As a natural result of the above, the temperature distribution in the nebula is insensitive to the wind strength and the mass distribution of the nebula, too. Thus, we can conclude that the temperature and geometrical surface height of the nebula under the stellar wind does not depend on neither the wind properties nor the mass distribution of nebula.

  • PDF

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • 천문학회지
    • /
    • 제51권2호
    • /
    • pp.37-48
    • /
    • 2018
  • Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

THE DYNAMICS OF STELLAR WINDS: THEIR STRUCTURES AND [OIII] LINE FORMATION

  • CHA SEUNG-HOON;LEE YOUNG-JIN;CHOE SEUNG-URN
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.253-254
    • /
    • 1996
  • To understand the dynamical structures of stellar wind bubble, one and two-dimensional calculations has been performed. Using FCT Code with cooling effects and assuming constant mass loss rate and ambient medium density, we could divide stellar winds into the regime of slow and fast winds. The slow wind driven bubble shows initially radiative and becomes partially radiative bubble in which shocked stellar wind zone is still adiabatic. In contrast., the fast wind driven bubble shows initially fully adiabatic and becomes adiabatic bubbles with radiative outer shell. We also determine analytically the onset of thin-shell formation time in case of fast wind driven bubble with power-law energy injection and ambient density structure. We solve the line transfer problem with numerical results in order to calculate line profile of [OIII] forbidden line.

  • PDF

Exploring the Extra Component in the Gamma-ray Emission of the New Redback Candidate 3FGL J2039.6-5618

  • Ng, Cho-Wing;Cheng, Kwong-Sang;Takata, Jumpei
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.93-99
    • /
    • 2016
  • A redback system is a binary system composed of a pulsar and a main sequence star. The inverse Compton (IC) scattering between the stellar soft photons and the relativistic pulsar wind will generate orbital-modulating GeV photons. We look for these IC emissions from redback systems. A multi-wavelength observation of an unassociated gamma-ray source, 3FGL J2039.6-5618, by Salvetti et al. (2015) detected an orbital modulation with a period of 0.2 days in both X-ray and optical cases. They suggested 3FGL J2039.6-5618 to be a new redback candidate. We analyzed the gamma-ray emission of 3FGL J2039.6-5618 using the data from the Fermi large area telescope (Fermi-LAT) and obtained the spectrum in different orbital phases. We propose that the spectrum has orbital dependency and estimate the characteristic energy of the IC emission from the stellar-pulsar wind interaction.

HALO EMISSION OF THE CAT’S EYE NEBULA, NGC 6543: SHOCK EXCITATION BY FAST STELLAR WINDS

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권3호
    • /
    • pp.173-180
    • /
    • 2002
  • Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001), while Hubble Space Telescope (HST) WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20", is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed 〔O III〕 line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky) fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

초신성 잔해와 항성풍 공동간의 상호 작용 (INTERACTION OF SUPERNOVA REMNANTS WITH STELLAR-WIND BUBBLES)

  • 이재관;구본철
    • 천문학논총
    • /
    • 제12권1호
    • /
    • pp.111-143
    • /
    • 1997
  • We have developed a spherical FCT code in order to simulate the interaction of supernova remnants with stellar wind bubbles. We assume that the density profile of the supernova ejecta follows the Chevalier mode1(1982) where the outer portion has a power-law density distribution($\rho{\propto}\gamma^{-n}$) and the SN ejecta has a kinetic energy of $10^{51}$ ergs. The structure of wind bubble has been calculated with the stellar mass loss rate $\dot{M}=5\times10^{-6}M_{\odot}/yr$ and the wind velocity $\upsilon=2\times10^3$ km/s We have simulated seven models with different initial conditions In the first two models we computed the evolution of SNRs with n=7 and n=14 in the uniform medium The numerical results agree with the Chevalier's similarity solution at early times. When all of the power-law portion of the ejecta is swept up by the reverse shock, the evolution slowly converges to the Sedov-Taylor stage. There is not much difference between the two cases with different n's The other five models simulate SNRs produced inside wind bubbles. In model III, we consider the SN ejecta of 1.4 $M_{\odot}$ and the radius of bubble ~2.76 pc so that ratio of the mass $\alpha(=M_{W.S}/M_{ej}$ is 2. We follow the complex hydrodynamic flows produced by the interaction of SN shocks with stellar shocks and with the contact discontinuities, In the model III, the time scale for the SN shock to cross the wind shell $\tau_{cross}$ is similar to the time scale for the reverse shock to sweep the power-law density profile $\tau_{bend}$. Hence the SN shock crosses the wind shell. At late times SN shock produces another shell in the ambient medium so that we have a SNR with double shell structure. From the numerical results of the remaining models, we have found that when $\tau_{cross}/\tau_{bend}\leq2$, or equivalently when $\alpha\leq50$, the SNRs produced inside wind bubbles have double shell structure. Otherwise, either the SN shock does not cross the wind shell or even if it crosses at one time, the reverse shock reflected at the center accelerates the wind shell to merge into the SN shock Our results confirm the conclusion of Tenorio-Tagle et a1(1990).

  • PDF

회전 원반계 내 제트 현상의 역학적 구조 (ON THE DYNAMICAL STRUCTURE OF THE JET SYSTEM IN THE DISK WITH THE KEPLERIAN ROTATION)

  • 정경숙;최윤정;최규홍;최승언
    • Journal of Astronomy and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.17-28
    • /
    • 1989
  • Parker(1963)가 제사한 고전적 태양풍 이론은 항성계를 비롯한 여러 개의 항성풍 현상을 역학적으로 잘 설명하고 있다. 태양풍과 같은 함성풍의 경우에 대해서는 구형의 항성풍 구조를 갖지만, 우리 은하 내에서 발견되는 SS433제트, 외부 은하인 M87에서 볼 수 있는 쌍방 분출역내의 광학 제트와 AGN근방에서 발견되는 다양한 제트 현상은 항성풍과는 달리 좁은 공간으로 집속화(collimation)되는 것이 특징이다. 이 연구에서는 각운동량이 보존되는 회전 원반계의 경우, 유체 역학적 이론에 근거하여 이러한 제트 현상을 일으키는 계의 역학적 구조에 대하여 알아보았다. 특히 제트를 이루는 흐름의 단면적의 변화가 제트 흐름의 물리적 변화를 일으키는데 회전 원반계의 경우, 이 관계가 뚜렷이 나타나는 것을 알았다.

  • PDF

A Hydrodynamic Study of Stellar Wind Accretion in S-type Symbiotic Stars

  • Lee, Young-Min;Kim, Hyosun;Lee, Hee-Won
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.72.1-72.1
    • /
    • 2019
  • Symbiotic stars are wide binary systems of a white dwarf and a mass losing giant, exhibiting various activities mainly attributed to accretion of a fraction of slow stellar wind emanating from the giant. We perform 3 dimensional hydrodynamical simulations using the FLASH code to investigate the formation and physical structures of an accretion disk in symbiotic stars with binary separation in the range of 2-4 au. Radiative cooling is introduced in the flow in order to avoid acute pressure increase in the vicinity of the accretor that may prevent stable disk formation. By setting the same density condition in front of the bow shock generated in two different velocity fields, the role of ram pressure balancing between the disk and the wind is examined. We find that three main streams (direct stream from the giant, stream following the accretion wake, and stream passing through the bow shock front) all feed the disk, and their individual contributions on the mass accretion onto the white dwarf are explored.

  • PDF