• 제목/요약/키워드: steering wheel angle

검색결과 129건 처리시간 0.025초

모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어 (Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control)

  • 차현수;김자유;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

Control Algorithm for Stabilization of Tilt Angle of Unmanned Electric Bicycle

  • Han, Sangchul;Han, Jongkil;Ham, Woonchul
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.176-180
    • /
    • 2001
  • In this papers, we derive a simple kinematic and dynamic formulation of an unmanned electric bicycle. We also check the controllability of the stabilization problem of bicycle. We propose a new control algorithm for the self stabilization of unmanned bicycle with bounded wheel speed and steering angle by using nonlinear control based on the sliding patch and stuck phenomena which was introduced by W. Ham. We also propose a sort of optimal control strategy for steering angle and driving wheel speed that make the length of bicycle\`s path be the shortest. From the computer simulation results, we prove the validity of the proposed control algorithm.

  • PDF

굴절차량을 위한 전차륜 조향 시스템 전자제어 장치 개발 (Development of the All Wheel Steering ECU for Articulated Vehicle)

  • 김기정;정기현;최경희;이수호;박태원;문경호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1231-1236
    • /
    • 2008
  • Since the bi-modal tram is too long so that the traditional steering system controlled only the first axle increases its turning radius, it is not suitable to the domestic road environment. In addition, it become hard to make fine parking with the traditional steering system. To resolve the problem, the bi-modal tram requires an all wheel steering system (AWS) that the second axle is controlled by the first axle's degree and the velocity of vehicle, and the third axle is steered by the articulation angle's degree and the velocity of degree. This paper addresses the factors for the AWS ECU design, the strategies to solve the problems, the core technologies for the implementation, and also the outcomes and analysis of the performance evaluation of implemented system.

  • PDF

Sensor Fusion을 이용한 전자식 조향장치의 Fail Safety 연구 (A Study on the Fail Safety of Electronics Power Steering Using Sensor Fusion)

  • 김병우;허진;조현덕;이영석
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1371-1376
    • /
    • 2008
  • A Steer-by-Wire system has so many advantages comparing with conventional mechanical steering system that it is expected to take key role in future environment friendly vehicle and intelligent transportation system. The mechanical connection between the hand wheel and the front axle will become obsolete. SBW system provides many benefits in terms of functionality, and at the same time present significant challenges - fault tolerant, fail safety - too. In this paper, failure analysis of SBW system will be performed and than sensor fusion technique will be proposed for fail safety of SBW system. A sensor fusion logic of steering angle sensor by using steering angle sensor, torque sensor and rack position sensor will be developed and simulated by fault injection simulation.

비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계 (Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

저상굴절버스의 전 차륜 조향 시스템 ECU 개발에 대한 연구 (A Study of Development of All Wheel Steering ECU in Bi-modal Tram)

  • 김기정;이수호;정기현;최경희;박태원;문경호
    • 정보처리학회논문지A
    • /
    • 제17A권1호
    • /
    • pp.19-26
    • /
    • 2010
  • 삶의 질이 높아지고 고령화 사회가 시작되면서, 사회적 약자들이 사용하기 쉬운 교통수단의 개발의 필요성이 증대되고 있다. 이러한 요구에 부응하기 위해, 한국철도기술연구원에서 주관하여 저상굴절버스(Bi-modal Tram)의 개발을 시작하게 되었다. 이 저상굴절버스는 버스와 같은 높은 접근성의 특징을 가져야 할 뿐만 아니라, 지하철과 같이 차체가 낮아야 하며, 휠체어나 승객의 발이 승강장과 차량 사이 틈에 끼지 않도록 정확한 주차가 이루어져야 한다. 하지만 저상굴절차량의 길이가 길어, 이러한 요건을 맞추기 위해서는 전 차륜 조향 시스템이 개발-장착되어야 한다. 전 차륜 조향 시스템이 장착된 저상굴절차량은 1축 차륜이 조향될 뿐 아니라, 1축 조향각 또는 굴절각과 속도 등의 상태에 따라 2축과 3축 차륜이 조향되는 특징을 가지고 있다. 본 연구에서는 전 차륜 조향장치의 개발 과정을 다룬다.

스마트워치를 이용한 자동차운전자 구분 및 핸들의 회전 방향 인지 기법 (A Method for Driver Recognition and Steering Wheel Turning Direction Estimation Using Smartwatches)

  • 허준;최재혁
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.844-851
    • /
    • 2019
  • 웨어러블 디바이스의 대중화에 따라 디바이스 내에 탑재된 다양한 센서를 활용하여 동작 인식, 헬스케어, 안전 보조 등 다양한 스마트 서비스를 제공하는 애플리케이션이 급증하고 있다. 본 논문에서는 9축 관성 센서가 탑재된 스마트워치를 이용하여 운전자를 인식하고, 운전 중 운전자의 자동차 핸들의 회전각을 탐지하는 방법을 제안한다. 제안하는 시스템은 i) 스마트워치 위치 인식, ii) 운전자 인식, iii) 핸들의 회전각 계산, 3가지 단계로 구성되어 있다. 이를 위해, IMU 센서와 아두이노(Arduino)를 이용하여 웨어러블 디바이스의 시제품을 자체 제작하고 제안하는 시스템을 구현 하였다. 실험을 통해 핸들의 회전 방향을 높은 정확도로 계산할 수 있고 회전각 또한 평균 $11.77^{\circ}$의 낮은 오차를 보여 제안하는 시스템의 실효성을 입증하였다.

A Steering Wheel Angle Analysis of Old and Young Drivers in Right Turning at Intersection

  • Ryu, Tae-Beum;Min, Byung-Chan
    • 대한인간공학회지
    • /
    • 제30권2호
    • /
    • pp.285-290
    • /
    • 2011
  • Due to the ageing-related degradation in physical and cognitive abilities, the elderly have difficulty in car driving and this is related to the high rate of car accidents among them. This study investigated the kinematic characteristics of old drivers' steering in right turning at intersections by comparing with young drivers. Thirteen old(60~70) and thirteen young(20~30) drivers who participated in the experiment turned their cars right side at intersections in a driving simulator. As results, the completion time of right turning at intersection of old drivers was larger than that of young drivers. The speeds of vehicle at the beginning and ending point of the right turning area of old drivers were smaller than those of young drivers, and also the steering angle at the ending point of the turning area of the former was smaller than that of the latter. The normalized jerk of old driver's steering was significantly larger than that of young drivers. These results indicate that old drivers modify their steering movement repeatedly and take the driving strategy of avoiding risks due to their reduced physical capabilities.

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • 대한인간공학회지
    • /
    • 제35권1호
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.