• 제목/요약/키워드: steering wheel

검색결과 422건 처리시간 0.029초

크로스 커플링을 이용한 이동 로봇의 경로제어에 관한 연구 (A Study on Path Tracking Control for Mobile Robot Using Cross Coupling)

  • 한영석;이쾌희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2351-2353
    • /
    • 1998
  • This paper suggests the wheel controller for PWS(Power Wheeled Steering) mobile robot. The proposed controller consists of two parts. To control each motor, the sliding mode controller implemented. This method has robustness about modeling error and disturbance, so the velocity tracking is well guaranteed in the presence of varying load. The design of a fuzzy cross-coupling controller for a PWS mobile robot is described here. Fuzzy cross-coupling control directly minimizes the tracking error by coordinating the motion of the two drive wheels. The fuzzy cross-coupling controller has excellent disturbance rejection and therefore is advantageous when the robot is not loaded symmetrically. The capability of the proposed controller was verified through the computer simulation.

  • PDF

차량 주행안정성 제어시스템의 자동안전 로직 (Failsafe Logic for a vehicle Stability Control System)

  • 민경찬;이건복;이경수
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1685-1691
    • /
    • 2004
  • This paper describes the fault detection and failsafe logic to be used in an Electronic Stability Program(ESP). The aim of this paper is to prevent of erroneous controls in the ESP. Developed this paper introduces the fault detection logic and evaluation of residual signals. The failsafe logic consists of four redundant sub-models, which can be used for detecting the faults in various sensors (yaw rate, lateral acceleration, steering wheel angle). We present two mathematical residual generation methods : one is a method using the average value and the other is a method using the minimum value of the each residual. We verified a failsafe logic developed using vehicle test results also we compare vehicle model based simulation results with test vehicle results.

지능화 차량의 고장진단 로직 개발 (Model-Based Fault Detection and Failsafe Logic Development)

  • 민경찬;김정태;이건복;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.774-779
    • /
    • 2004
  • This paper describes the fault detection and failsafe logic to be used in the Electronic Stability Program (ESP). The Aim of this paper is prevention of erroneous control in the ESP. This paper introduces the fault detection logic and evaluation of residual signals. Failsafe logic consist of four redundant sub-models and they can be used for the detection of faults in each sensor (yaw rate, lateral acceleration, steering wheel angle). We presents two mathematical residual generation method ; one is the method by the average value, and the other is the method by the minimum value of the each residual. We verify a failsafe logic using vehicle test results, also we compare vehicle model based simulation results with test vehicle results.

  • PDF

단일 궤도를 갖는 가변형 로봇 바퀴 구조 (Variable Shapes Single-Tracked of Belt Type Wheel Mechanism)

  • 김지홍;이창구
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.198-202
    • /
    • 2009
  • Urban Search and Rescue (USAR) involves locating, rescuing (extricating), and medically stabilizing victims trapped in confined spaces. In this paper we state the current approach to USAR, address the limitations and discuss the way for moving in rugged topography. To achieve objectives such as surveillance, reconnaissance, and rescue, it is necessary to develop a driving mechanism that can handle rugged geographical features. We propose a new type of driving mechanism for a rescue robot that has a variable shape single-track. By using a variety shapes, it can get the gain of steering and rotating and the ability to overcome stairs. In this paper, we analyzed the design parameters for making variable transform shapes and determined the specifications of the robot to enhance adaptability to stairs.

자동차 방향전환 표시장치 개발 (Development of a New Car Direction Indicator System)

  • 박노국
    • 대한안전경영과학회지
    • /
    • 제3권2호
    • /
    • pp.181-188
    • /
    • 2001
  • This paper deals with a newly developed direction indicator system of a car which displays left turn and U-turn signal differently, so that the following driver can identify the intent of the next car ahead easily. In general, when a car want to change its direction, the driver move the blinker lever below the steering wheel up or down. However, as the left turn and U-turn signal are the same, there always be the risk of rear-end collision by misinterpreting U-turn signal as left turn signal. In this paper, a new direction indicator system which differentiates left turn and U-turn signal is developed. The left turn signal is the same as before, but when a driver want to U-turn, an additional U-turn signal blinks at the rear of the car. By identifying the direction signals clearly, the developed system is expected to alleviate the risk of car accident.

  • PDF

ENHANCEMENT OF VEHICLE STABILITY BY ACTIVE GEOMETRY CONTROL SUSPENSION SYSTEM

  • Lee, S.H.;Sung, H.;Kim, J.W.;Lee, U.K.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.303-307
    • /
    • 2006
  • This paper presents the enhancement of vehicle stability by active geometry control suspension(AGCS) system as the world-first, unique and patented chassis technology, which has more advantages than the conventional active chassis control systems in terms of the basic concept. The control approach of the conventional systems such as active suspensions(slow active, full active) and four wheel steering(4WS) system is directly to control the same direction with acting load to stabilize vehicle behavior resulting from external inputs, but AGCS controls the cause of vehicle behaviors occurring from vehicle and thus makes the system stable because it works as mechanical system after control action. The effect of AGCS is the remarkable enhancement of avoidance performance in abrupt lane change driving by controlling the rear bump toe geometry.

전차량의 3차원 동역학 모델 (Three-Dimensional Dynamic Model of Full Vehicle)

  • 민경득;김영철
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.

철도차량 유지보수 훈련용 추진제어장치 시뮬레이터 개발에 관한 연구 (A Study on the Development of Propulsion Control Simulator for Maintenance Training of Railway Vehicle)

  • 김보성;정노건;김재문
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1528-1534
    • /
    • 2015
  • This paper designed the railway vehicle running device with a proto-type for the railway vehicle maintenance training and developed a propulsion control device simulator equipped the imitation steering wheel. In addition, this paper applied a multi-thread technology in order to implement the staged fault and the propulsion control device protected operation test and an implementation of the failure that occur in actual rail vehicle and confirm the validity as the propulsion control device simulator for the maintenance training.

디스크 브레이크의 이상떨림에 관한 고장사례연구 (A Study for Failure Examples of Brake Judder with Abnormal Vibration of Disc Brake)

  • 문학훈
    • 한국가스학회지
    • /
    • 제20권1호
    • /
    • pp.40-45
    • /
    • 2016
  • 이 연구의 목적은 브레이크 저더가 자동차 브레이크 시스템에서 나타나는 많은 문제중에 하나 이며,연구자들이나 엔지니어가 브레이크 저더를 최소화하기 위하여 원인과 메카니즘에 대해 연구하고 있음에도 불구하고 나타나는 현상이다.운전자들이 느끼는 것은 핸들이나 브레이크 페달 또는 차체 바닥에서 오는 높은 주파수의 진동으로 느낄수 있으며 소음도 같이 동반하게 된다.따라서 고장사례를 통하여 운전자가 디스크 브레이크의 길들이기를 하거나 디스크의 열변형 부분을 제거하여 브레이크 저더를 저감 할수 있도록 조치방법에 대해서 고장사례 연구를 하였다.

Ackermann Geometry-based Analysis of NHC Satisfaction of INS for Vehicular Navigation according to IMU Location

  • Cho, Seong Yun;Chae, Myeong Seok
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권1호
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, we analyze the Non-Holonomic Constraint (NHC) satisfaction of Inertial Navigation System (INS) for vehicular navigation according to Inertial Measurement Unit (IMU) location. In INS-based vehicle navigation, NHC information is widely used to improve INS performance. That is, the error of the INS can be compensated under the condition that the velocity in the body coordinate system of the vehicle occurs only in the forward direction. In this case, the condition that the vehicle's wheels do not slip and the vehicle rotates with the center of the IMU must be satisfied. However, the rotation of the vehicle is rotated by the steering wheel which is controlled based on the Ackermann geometry, where the center of rotation of the vehicle exists outside the vehicle. Due to this, a phenomenon occurs that the NHC is not satisfied depending on the mounting position of the IMU. In this paper, we analyze this problem based on Ackermann geometry and prove the analysis result based on simulation.