• Title/Summary/Keyword: steering wheel

Search Result 422, Processing Time 0.027 seconds

System Modeling and Simulation for an In-wheel Drive Type $6{\times}6$ Vehicle (인휠드라이브 타입 $6{\times}6$ 차량 플랫폼을 위한 시스템 모델링 및 시뮬레이션)

  • Lee, Jeong-Yeob;Suh, Seung-Whan;Shon, Woong-Hee;Kim, Chang-Jun;Han, Chang-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2011
  • The skid-steering method that applied a number of mobile robot currently is extremely effective in narrow area. But it contains several problems such as its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. Through this paper, suitable control algorithm of $6{\times}6$ skid steering wheeled vehicle and its driving methods are proposed by analyzing the behavior $6{\times}6$ skid-steered wheeled vehicle model designed by engineering analysis strategy. To do this, based on a behavior of designed driving system, required torque and other performance of in-wheel type motor system are considered, and finally control algorithm for each wheel is proposed and simulated using this model. To test the proposed vehicle system, driver model is designed using PID closed loop system and included in the total driving control algorithm. The Performance of designed vehicle model is verified by using DYC (Direct Yaw Control) cornering mode and slip mode control to follow the steering input which are essential to evaluate the driving performance of $6{\times}6$ vehicle. Proposed modeling strategy and control method will be implemented to the real $6{\times}6$ in-wheel drive type vehicle.

Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles (폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF

A Study on the Development of an Electronic Control Unit and the Fault Detection Algorithm for a Motor Driven Steering Column (전동식 조향 칼럼 장치의 전자 제어장치 및 오류 검출 알고리즘 개발에 관한 연구)

  • SunWoo, Myoung-Ho;Lee, Yong-Kook;Lee, Jae-In
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.448-450
    • /
    • 1998
  • Global competition of automotive market and affordable prices of electronic components become the major reason that automotive industries rapidly employ a large number of electric and electronic systems to improve vehicle performance and to meet various regulations such as emission, fuel efficiency, and safety. Especially, the provision of a motor-driven steering column (MDSC) for luxury vehicle is getting popular for drivers' convenience. In this study, an MDSC is developed, which provides several intelligent features such as the manual operation for tilting and telescoping the steering wheel, and the save/recall operation for three different steering wheel positions. In addition, the fault detection algorithm is developed.

  • PDF

Analysis on Steering Capability of a New Bogie with Independently Rotating Wheels

  • Chi, Maoru;Zeng, Jing;Guo, Wenhao;Zhang, Weihua;Jin, Xuesong
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.164-169
    • /
    • 2009
  • A new scheme about a coupled bogie with Independently Rotating Wheels was put forward firstly. And then it is fund by theoretic analysis that the bogie takes on prominent radial capability on curved track and splendiferous restoring capability on tangent track. Lastly, a dynamic calculating model of the coupled bogie with independently rotating wheels has been established and a dynamic simulation analysis on steering capability of the bogie was made and the simulation results can inosculate foregoing theoretic analysis, which illuminates that the coupled bogie can solve drastically the difficulty about steering problem of independently rotating wheel.

  • PDF

Development of the All Wheel Steering ECU for Articulated Vehicle (굴절차량을 위한 전차륜 조향 시스템 전자제어 장치 개발)

  • Kim, Ki-Jeong;Chung, Ki-Hyun;Choi, Kyung-Hee;Lee, Soo-Ho;Park, Tae-Won;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1231-1236
    • /
    • 2008
  • Since the bi-modal tram is too long so that the traditional steering system controlled only the first axle increases its turning radius, it is not suitable to the domestic road environment. In addition, it become hard to make fine parking with the traditional steering system. To resolve the problem, the bi-modal tram requires an all wheel steering system (AWS) that the second axle is controlled by the first axle's degree and the velocity of vehicle, and the third axle is steered by the articulation angle's degree and the velocity of degree. This paper addresses the factors for the AWS ECU design, the strategies to solve the problems, the core technologies for the implementation, and also the outcomes and analysis of the performance evaluation of implemented system.

  • PDF

Dimensional Syntheris and Kinematic Analysis of RSCS-SSP Spatial Mechanism with use of the Displacement Matrix Method (변위행렬법을 이용한 RSCS-SSP 공간기구의 치수합성과 운동해석)

  • 강희용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.113-118
    • /
    • 1997
  • This paper presents the dimensional synthesis and kinematic analysis of the RSCS-SSP motion generating spatial mechanism using the displacement matrix method. This type of spatial mechanisms is used for the Mcpherson suspension in small automobiles. It is modeled for the wheel bump/rebound and steering motion. First, the suspension is modeled as a multiloop spatial rigid body guidance mechanism for the two major motions. Then the design equations for SSP, RS, and SC strut links are applied to synthesize an RSCS-SSP for up to three prescribed positions for the steering motiom from the suspension design specification. Thus a RSCS-SSP mechanism which is synthesized is also analyzed for the displacement during the steering motion.

  • PDF

Development of the Virtual Driving Environment for the AWS ECU Test Platform of the Bi-modal Tram (저상굴절 궤도차량의 AWS ECU 테스트 플랫폼을 위한 가상 주행환경 개발)

  • Choi, Seong-Hoon;Park, Tea-Won;Lee, Soo-Ho;Moon, Kyung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.283-290
    • /
    • 2007
  • A bi-modal tram has been developed to offer an advanced transportation service compared with existing vehicles. The All-Wheel-Steering system is applied to the bi-modal tram to satisfy the required steering performance because the bi-modal tram has extended length and articulated mechanism. An ECU for the steering system is essential to steer wheels on 2nd and 3rd axles by the specific AWS algorithm with the prescribed driving condition. The Hardware-In-the-Loop Simulation(HILS) system is planned for the purpose of evaluating the steering system of the bi-modal tram. There are kinematic links with the hydraulic actuator to steer wheels on each 2nd and 3rd axles and also same steering mechanism as the actual vehicle is in the HILS system. Controlling the movement of hydraulic actuator which reflects the lateral steering reaction force on each wheel is the key to realize the HILS system, but the reaction force is continuously changed according to various driving conditions. Therefore, the simulation through the multi-body dynamics model is used to obtain the required forces.

  • PDF

Right Atrial Free Wall Rupture due to Blunt Cardiac Trauma - A Case Report - (외상성 우심방 파열 1례 보)

  • 김요한
    • Journal of Chest Surgery
    • /
    • v.20 no.2
    • /
    • pp.427-431
    • /
    • 1987
  • A case is presented of a steering wheel Injury to the chest which developed right atrial free wall rupture and cardiac tamponade without rib fractures or hemo-pneumothorax. A 30 year old man who sustained, blunt chest trauma by steering wheel injury to his chest developed right atrial rupture and cardiac tamponade. Pericardiocentesis was performed and cardiac tamponade was confirmed. After a median sternotomy, large right atrial free wall laceration [about 8cm] was noted. He was placed on cardiopulmonary bypass. The laceration wound of right atrium was closed with a 2 rows of continuous suture. Recovery was uneventful. The patient has returned to his previous level of activity.

  • PDF

Development of the All-Wheel-Steering Algorithm using Dynamic Analysis of the Bi-modal Vehicle (저상굴절차량의 주행해석을 이용한 전차륜 조향 알고리즘 개발)

  • Jeon, Yong-Ho;Park, Tae-Won;Lee, Soo-Ho;Kim, Duk-Gie;Moon, Kyung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.144-151
    • /
    • 2008
  • The bi-modal vehicle is composed of two car-bodies and three axles. Each axle of the vehicle has an independent suspension and all wheels are steerable. Since the bi-modal vehicle has longer wheelbase than most urban buses, the All-Wheel-Steering(AWS) system is adapted for to ensure safe driving and proper turning radius on a curved road. This paper proposes an AWS control algorithm for stable driving of bi-modal vehicle. Steering angles and directions of each axle of bi-modal vehicle changed according to the driving environment and steering modes. In the case that front and rear axles should be steered in opposite directions is a negative mode, and the other case that the axles should be steered in the same direction is a positive mode. For example, in the positive mode, front and real axles are steered in the same direction, while in the negative mode, they are steered in the opposite direction. A multibody model of the vehicle is used to verify the performance of the steering algorithm and simulation results of 2WS are compared with those of AWS under the same condition.