• Title/Summary/Keyword: steep slope area

Search Result 174, Processing Time 0.022 seconds

Evaluation of Flooding Characteristics of Dam Reservoir using Cumulative Flooding Area Curve (누가침수면적곡선을 이용한 댐 저수구역의 침수특성 평가)

  • Munseok Lee;Chulsang Yoo
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.14-25
    • /
    • 2023
  • Floodplain in a reservoir is defined as the area naturally formed between the design flood level and the normal pool level. Located around the dam reservoir, floodplain has been damaged in many different ways including cultivation. As it is impossible to restore all the damaged floodplain at once, it is necessary to determine their order of priority. This process considers various factors, among which the flooding frequency is an important hydrologic characteristic, Different from the floodplains in a river, all the floodplains around the given dam reservoir have the same flooding frequency. To overcome this problem, this study proposes to use the cumulative flooding area curve, which represents the cumulative flooding area corresponding to the reservoir water level. Especially, this study evaluates the flooding frequency of those water levels corresponding to the cumulative flooding area of 30%, 50% and 70%. As application examples, this study considers the five restoration candidates each selected in the Andong Dam, Imha Dam, Youngju Dam and Nam river Dam of the Nakdong River Basin. As a result, the cumulative flooding area curve was found to well represent the overall shape of the floodplain (i.e., steep-to-mild slope or mild-to-steep slope). Also, the flooding frequency of those water levels corresponding to the cumulative flooding area of 30%, 50% and 70% was found to be so effective to quantify the hydrologic characteristics of a floodplain.

Landslide Detection using Wireless Sensor Networks (사면방재를 위한 무선센서 네트워크 기술연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

Analysis of Debris Flow Type in Gangwon Province by Database Construction (DB구축을 통한 강원지역 토석류 유형 분석)

  • Jun, Kyoung-Jea;Kim, Gi-hong;Yune, Chan-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.171-179
    • /
    • 2013
  • In recent years in Korea, Typhoon Rusa (2002), Typhoon Maemi (2003), and the localized extreme rainfall followed by Typhoon Ewiniar in 2006 devastated residential areas, roads, and agricultural lands in Gangwon province where 90% of the area is in mountainous regions. Most of the economic losses and casualties were concentrated in the area near the mountain valleys and creeks due to the floods and debris flows. In this study, DATABASE, which includes a total 180 debris flow events in the Gangwon area, was created by collecting the hazard records and field investigations of existing debris flow sites. Analysis results showed that the most of the debris flows in Gangwon province initiated from the small slope failure with relatively steep slope of $18.1^{\circ}$. And they flowed short distances about 420 m in gentle slope with the average angle of $18.1^{\circ}$. In addition, rainfall condition was important for the triggering of debris flow not only at the day of debris flow but also extended period of rainfall before debris flow.

Position Error Analysis of Digital Map for LIS/GIS Database (LIS/GIS의 D/B구축을 위한 수치지도의 위치오차분석에 관한 연구)

  • 조규전;이영진;홍용현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • In the digital mapping for data base contruction, the positional information is used as an important tool in LIS/GIS(Land Information System/Geographic Information System) that is used for a facility management, urban/cadastral management as well as in spatial analysis. In this paper, for an error analysis of X, Y coordinates data on digital map, test area was classified by topography, density, and slope. The coordinates on topographic map were assumed as true values and they were compared with the coordinates on digital map. A result of the numerical test show that a vector data of line type had more gross error than vector data of polygon type. And, SME(stanadrd mean error) of urban or intermountain area had small values compared to that of suburban area in topography analysis. The SME of dense and middle zone had small values compared to that of loose zone in density analysis. In another slope analysis. the SME of steep of gentle slope had small values compared to that of flatland.

  • PDF

Design of Optimum Volume of Sediment Settling Pond at Highland Agricultural Watershed Using WEPP Model (WEPP 모델을 이용한 고랭지밭 경사도별 침사지 적정용량 산정방법)

  • Hyun, Geun-Woo;Park, Sung-Bin;Park, Jeong-Hee;Geon, Sang-Ho;Choi, Jae-Wan;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.87-95
    • /
    • 2010
  • The optimum volume of sediment settling pond is determined by the maximum rainfall and surface peak rate runoff from crop field. Based on analysis of measured rainfall and runoff data, it was found that rainfall intensity of 2 mm/min would result in peak rate runoff from the agricultural field of study area. Optimum pond volume under various slope scenarios were determined using the WEPP model calibrated with measured flow and sediment data for the study watershed. For the agricultural field with the slope of 7 % and area of $2,600\;m^2$ at the study area, at least $6.4\;m^3$ of sediment settling pond is needed as shown in this study. The results presented in this study could be used as a guide in designing appropriate volume of sediment settling pond at highland agricultural areas because both very detailed field measurement and calibrated WEPP model results are used in the analysis.

Bund Collapse in Sloping Paddy Area by a Heavy Rainfall -Case Study for Dongrim-ri in Chungbuk Province- (집중호우에 의한 경사지논의 논둑붕괴 -충북 청원군 옥산면 동림리의 사례-)

  • 김진수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.55-63
    • /
    • 1996
  • The situation and cause of bund collapse in steep sloping paddy area by a heavy rainfall of Chungbuk Province were investigated by field surveys. Shapes of paddy plots are irregular and average size of them is 12.6a. Surface, groundwater and plot-to-plot irrigations are being carried out in the study plots. The type of bund collapse can be divided as follows: overflow type and inundation type. The overflow type generally occurs at the bund with slope lacking the design standard. The inundation type damages paddy plots more seriously than the overflow type. It induces continuous bund collapse from a inflow-plot to a outflow-plot and includes lots of type (inside paddy) collapse, which results in much subsoil erosion. The installation of mountain stream weir and maintenance of mountain stream are proposed to prevent the inundation type collapse.

  • PDF

Analysis on the effect of the forest fire and rainfall on landslide in Gangwon area (강원지역 산사태발생지의 산불발생이력과 강우특성에 관한 분석)

  • Jun, Kyoung-Jea;Lee, Seung-Woo;Yune, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1020-1025
    • /
    • 2009
  • Recently, unusual change of weather occurred in world wide region causes localized heavy rainfall and consequently disasters like landslide and debris flow in steep slope area. And the main factors of these disasters are rainfall and forest fire. To verify the existing landslide prediction and warning system, information about landslide and rainfall were collected for a data base system and analysed.

  • PDF

Evaluation of Slope Stability of Taebaeksan National Park using Detailed Soil Map (정밀토양도를 이용한 태백산국립공원의 사면안정성 평가)

  • Kim, Young-Hwan;Jun, Byong-Hee;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • More than 64% of Korea's land is occupied by mountain regions, which have terrain characteristics that make it vulnerable to mountain disasters. The trails of Taebaeksan Mountain National Park-the region considered in this study-are located in the vicinity of steep slopes, and therefore, the region is vulnerable to landslides and debris flow during heavy storms. In this study, a slope stability model, which is a deterministic analysis method, was used to examine the potential occurrence of landslides. According to the soil classification of the detailed soil map, the specific weight of soil, effective cohesion, internal friction angle of soil, effective soil depth, and ground slope were used as the parameters of the model, and slope stability was evaluated based on the DEM of a 1 m grid. The results of the slope stability analysis showed that the more hazardous the area was, the closer the ratio of groundwater/effective soil depth is to 1.0. Further, many of the private houses and commercial facilities in the lower part of the national park were shown to be exposed to danger.

Geophysical and Sedimentological Characteristics of Lomilik Seamount, West Pacific (서태평양 Lomilik 해저산 퇴적환경 특성)

  • Lee, Hyun-Bok;Oh, Jae-Kyung;Park, Cheong-Kee;Chi, Sang-Bum;Kim, Jong-Uk;Moon, Jai-Woon;Nam, Sang-Heon
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.207-218
    • /
    • 2004
  • Lomilik Seamount in the west Pacific was seismically surveyed and photographed to illuminate the bottom topography, the condition of manganese crust, and the characteristics of sedimentary environment. Lomilik Seamount has a NW-SE elongated bottom topography with steep slopes in the NESW direction part. Even though the steep slopes of the seamount are devoid of deposits, the summit area and gentle slope of the seamount are covered with thick deposits. The seismic data indicate that Lomilik Seamount is a flat-topped and step-faulted guyot of volcanic origin. Deep-sea camera photographs show that much of the seafloor is rippled in symmetrical and asymmetrical patterns. The traces of biological activity were distinct on gentle seafloor suggesting the low-energy bottom conditions. Some photographs also show outcrops encrusted with manganese crusts. Sedimentary environments in the Lomilik Seamount appear have been governed by regional morphology and strong bottom current.

The Effect of Slope-based Curve Number Adjustment on Direct Runoff Estimation by L-THIA (경사도에 따른 CN보정에 의한 L-THIA 직접유출 모의 영향 평가)

  • Kim, Jonggun;Lim, Kyoung Jae;Park, Younshik;Heo, Sunggu;Park, Joonho;Ahn, Jaehun;Kim, Ki-sung;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.897-905
    • /
    • 2007
  • Approximately 70% of Korea is composed of forest areas. Especially 48% of agricultural field is practiced at highland areas over 400 m in elevation in Kangwon province. Over 90% of highland agricultural farming is located at Kangwon province. Runoff characteristics at the mountainous area such as Kangwon province are largely affected by steep slopes, thus runoff estimation considering field slopes needs to be utilized for accurate estimation of direct runoff. Although many methods for runoff estimation are available, the Soil Conservation Service (SCS), now Natural Resource Conservation Service (NRCS), Curve Number (CN)-based method is used in this study. The CN values were obtained from many plot-years dataset obtained from mid-west areas of the United States, where most of the areas have less than 5% in slopes. Thus, the CN method is not suitable for accurate runoff estimation where significant areas are over 5% in slopes. Therefore, the CN values were adjusted based on the average slopes (25.8% at Doam-dam watershed) depending on the 5-day Antecedent Moisture Condition (AMC). In this study, the CN-based Long-Term Hydrologic Impact Assessment (L-THIA) direct runoff estimation model used and the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separation from the stream flow data. The $R^2$ value was 0.65 and the Nash-Sutcliffe coefficient value was 0.60 when no slope adjustment was made in CN method. However, the $R^2$ value was 0.69 and the Nash-Sutcliffe value was 0.69 with slope adjustment. As shown in this study, it is strongly recommended the slope adjustment in the CN direct runoff estimation should be made for accurate direct runoff prediction using the CN-based L-THIA model when applied to steep mountainous areas.