• Title/Summary/Keyword: steels compositions

Search Result 40, Processing Time 0.021 seconds

HIP DIFFUSION BONDING OF INTRICATE SHAPE COMPONENTS MADE OF LIGHT ALLOYS AND STEELS

  • Guelman, A.A.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.769-775
    • /
    • 2002
  • The results gained as part of the study on weldability of compositions from steels, aluminium, titanium alloys in various combinations including similar and dissimilar metal bonding variants with reference to solution of specific practical problems are presented in this work. It has been shown that in the case of HIP/DB carried out with direct interaction of bonding surfaces of the most dissimilar material combinations under study, formation of high-quality joints is not assured due to various reasons. That is why development of special bonding techniques was required. The bonding techniques developed and used for HIP/DB of dissimilar steels, "Steel-bronze", "Titanium-niobium"; "Titanium-steel" and other compositions under study ensured vacuum-tight microvoid-free joints strength of a which was equal to the milder parent metal, including those obtained at reduced welding pressures. Examples of new products manufactured by HIP/DB using the technologies developed are presented.

  • PDF

A Statistical Analysis on the Chemical Compositions & Mechanical Properties of Weathering Steels (내후성강재의 화학성분 및 기계적성질에 관한 통계적 분석)

  • Kyung, Kab Soo;Kwon, Soon Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The application in steel structures is increasing the mill sheet for the weathering steels by minimum maintenance cost in a life cycle cost. These have been collected and statistically analyzed to investigate chemical compositions, mechanical properties, weldability indices, weathering index and impact absorbed energy. From this study, although the band of dispersion in chernical compositions, mechanical properties and impact absorbed energy of the weathering steels appeared a little larger, the results revealed that these values have adequately satisfied the standard values of the Korean Standard. Furthermore, it was found that the weldability indices and the weathering index for the weathering steels have respectively satisfied the value prescribed by the Japanese Highway Specification and ASTM.

A Study on the Machining Characteristics by the Internal Quality of Conecting Rod's Meterials for Trucks (트럭용 커낵팅 로드 소재의 내부 품질에 따른 절삭 특성 연구)

  • 김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.97-101
    • /
    • 1996
  • In this paper, We have studied internal quality incluiding chemical compositions, microscopic structrue and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting resistence including tensile strength value, hardeness value, impact value etcs. We have compared chip treatments of test materials. In analyzing internal quality, all of test materials have typical ferrite+pearlite structure. But, nonmetallic inclusion have oxide and sulfide inclusion in medium carbon steels, mainly sulfide inclusion is existed in S-free cutting steels. In Ca+S-free cutting steels, calcium aluminate and sulfide complex inclusion, had low-melting points, as deformation of sulfide and oxide inclusion is existed. machining characteristics, cutting resistence is maximum in Ca+S-free cutting steels, minimum in medium carbon steels. Chip treatements are excellent in S-free cutting steels, similar to the Ca+S free cutting steels and medium carbon steels.

  • PDF

A study on the Mechanical Characteristics by the Internal Quality of Connecting Rod Materials for Trucks (트럭용 커넥팅 로드 소재의 내부 품질에 따른 기계적 특성 연구)

  • 김동현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-81
    • /
    • 1998
  • We have studied internal quality including chemical compositions, microscopic structure and nonmetallic inclusion of test materials. We have analyzed tensile strength value, hardness value, impact value etc. In analyzing internal quality, all of the test materials showed typical ferrite+pearlite structure. But nonmetallic inclusion showed oxide and sulfide inclusions in medium carbon steels, and sulfide inclusion is S-free cutting steels. In ca+ S-free cutting steels, the calcium aluminate and sulfide complex inclusion had low-melting points as deformation of sulfide and oxide inclusion is existed. It was found that tensile strength and hardness give maximum value in medium carbon steels, where as minimum in Ca + -free cutting steels. But values of elongation, reduction of area impact are reverse. Fracture surface of impact specimen is ductile in free cutting steels but brittle in medium cabon steels.

  • PDF

PREDICTION OF MARTENSITE START TEMPERATURES OF HIGHLY ALLOYED STEELS

  • SEOK-JAE LEE;MINSU JUNG
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.1
    • /
    • pp.107-111
    • /
    • 2021
  • We propose an empirical equation to predict the martensite start temperatures of highly alloyed steels containing more than 3 wt.% of Ni or Cr or 2 wt.% of Mo, W, or Co. The martensite start temperature calculated by the proposed equation was in good agreement with experimental data owing to not only the derivation from experimental data of alloy steels with a wide range of chemical compositions but also the interaction term between carbon and carbide-forming alloying elements.

Effects of Microstructure on Ductility of Medium Carbon Spring Steels (중탄소 스프링강의 연성에 미치는 미세조직의 영향)

  • Lee, Hyun-Kwuon;Lee, Sang-Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Effects of retained austenite contents on ductility of medium carbon spring steels according to steel alloy compositions and heat treatment conditions were studied. Contents of retained austenite varied with steel compositions and heat treatment conditions, and some retained austenite were found to transform to martensite on stress. Reduction of area (RA) increased with contents of retained austenite, then saturated through its maximum, and subsequently decreased. Increase in RA with retained austenite contents could be due to crack blunting effect by retained austenite on stress, however, more contents of martensite transformed from retained austenite in its higher contents could cause decrease in RA.

A Study on Dimensional Change after Heat Treatment and Optimal Chemical Composition of Steels with 1200 MPa Tensile Strength for Automotive Subframe (인장강도 1200 MPa 급 자동차 서브 프레임의 합금성분 최적화 및 열변형 거동 연구)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.107-116
    • /
    • 2020
  • Four air hardening steels with carbon, silicon, manganese, chromium, and molybdenum variations have been used in this study to find out the optimal chemical compositions of steels with over 1200 MPa tensile strength for automotive subframe. The dimensional changes after heat treatment were determined for two automotive parts with open and closed cross sections using 3D scanner. When four steels were austenitized at 900℃ for 30 seconds, cooled at 3℃/s, reheated to 450℃ for 10 seconds followed by air cooling to simulate hot-dip galvanizing treatment showed ultra high tensile strength over 1200 MPa. Rear floor cross member with open cross section revealed much bigger dimensional changes than subframe with closed cross section after heat treatment at 900℃ for 20 minutes followed by air cooling.

Development of Special Steels for Turbine Blade of Nuclear Power Plant (원자력 터빈 블레이드용 특수강 개발)

  • Im, Cha-Yong;Kim, Seong-Jun
    • 연구논문집
    • /
    • s.24
    • /
    • pp.119-128
    • /
    • 1994
  • A special steels have been developed for the possible applications of turbine blade in nuclear power plant. The compositions of developed alloy were selected by the reference of imported alloy. The various properties such as tensile property, impact energy, hardness, and microstructures were investigated. All the properties of optimum heat treated materials were satisfied with the present specifications of turbine blade materials in unclear power plant. Furthermore, FATT(Fracture appearance transition temperature), high temperature tensile properties, and transformation temperatures of developed alloy also have been studied.

  • PDF

Determination of Optimal Austenitizing Temperature in High-Alloyed Tool Steels (고합금 공구강의 최적 오스테나이트 처리 온도 결정)

  • Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.156-163
    • /
    • 2017
  • In the present study, we investigated the optimal austenitizing temperature of high-alloyed tool steels from an industrial point of view. Austenitizing temperatures for manufacturing 25 commercial tool steels were surveyed with their alloy compositions. The relationship between the austenitizing temperatures and the critical equilibrium temperatures by thermodynamic-based calculation was analyzed and a correlation was found. Based on the austenitizing temperatures of 25 commercial tool steels and the thermodynamic calculation results, we proposed a simple equation to predict an optimal austenitizing temperature to achieve superior mechanical properties of high-alloyed tool steels. The applicability of the proposed equation was experimentally validated with a new developed tool steel.