• Title/Summary/Keyword: steel-truss bridge

Search Result 91, Processing Time 0.025 seconds

Mechanical performance study and parametric analysis of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Mingsai;Xu, Hang
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.189-198
    • /
    • 2019
  • This paper aims to study the mechanical performance of three-tower four-span suspension bridges with steel truss girders, including the static and dynamic characteristics of the bridge system, and more importantly, the influence of structural parameters including the side-main span ratio, sag-to-span ratio and the girder stiffness on key mechanical indices. For this purpose, the Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is taken as an example in this study. This will be the first three-tower suspension bridge with steel truss girders in the world. The mechanical performance study and parametric analysis are conducted based on a validated three-dimensional spatial truss finite element model established for the Oujiang River North Estuary Bridge using MIDAS Civil. It is found that a relatively small side-main span ratio seems to be quite appropriate from the perspective of mechanical performance. And decreasing the sag-to-span ratio is an effective way to reduce the horizontal force subjected to the midtower and improve the antiskid safety of the main cable, while the vertical stiffness of the bridge will be reduced. However, the girder stiffness is shown to be of minimal significance on the mechanical performance. The findings from this paper can be used for design of three-tower suspension bridges with steel truss girders.

Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1237-1257
    • /
    • 2016
  • The paper concerns analysis of effects of shrinkage of slab concrete in a steel-concrete composite deck of a through truss bridge span. Attention is paid to the shrinkage alongside the span, i.e., transverse to steel-concrete composite cross-beams. So far this aspect has not been given much attention in spite of the fact that it affects not only steel-concrete decks of bridges but also steel-concrete floors of steel frame building structures. For the problem analysis a two-dimensional model is created. An analytical method is presented in detail. A set of linear equations is built to compute axial forces in members of truss girder flange and transverse shear forces in steel-concrete composite beams. Finally a case study is shown: test loading of twin railway truss bridge spans is described, verified FEM model of the spans is presented and computational results of FEM and the analytical method are compared. Conclusions concerning applicability of the presented analytical method to practical design are drawn. The presented analytical method provides satisfactory accuracy of results in comparison with the verified FEM model.

Reliability evaluation of steel truss bridge due to traffic load based on bridge weigh-in-motion measurement

  • Widi Nugraha;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.323-336
    • /
    • 2022
  • Steel truss bridge is one of the most widely used bridge types in Indonesia. Out of all Indonesia's national roads, the number of steel truss bridges reaches 12% of the total 17,160 bridges. The application of steel truss bridges is relatively high considering this type of bridge provides advantages in the standardization of design and fabrication of structural elements for typical bridge spans, as well as ease of mobilization. Directorate of Road and Bridge Engineering, Ministry of Works and Housing, has issued a standard design for steel truss bridges commonly used in Indonesia, which is designed against the design load in SNI 1725-2016 Bridge Loading Standards. Along with the development of actual traffic load measurement technology using Bridge Weigh-in-Motion (B-WIM), traffic loading data can be utilized to evaluate the reliability of standard bridges, such as standard steel truss bridges which are commonly used in Indonesia. The result of the B-WIM measurement on the Central Java Pantura National Road, Batang - Kendal undertaken in 2018, which supports the heaviest load and traffic conditions on the national road, is used in this study. In this study, simulation of a sequences of traffic was carried out based on B-WIM data as a moving load on the Australian type Steel Truss Bridge (i.e., Rangka Baja Australia -RBA) structure model with 60 m class A span. The reliability evaluation was then carried out by calculating the reliability index or the probability of structural failure. Based on the analysis conducted in this study, it was found that the reliability index of the 60 m class Aspan for RBA bridge is 3.04 or the probability of structural failure is 1.18 × 10-3, which describes the level of reliability of the RBA bridge structure due to the loads from B-WIM measurement in Indonesia. For this RBA Bridge 60 m span class A, it was found that the calibrated nominal live load that met the target reliability is increased by 13% than stated in the code, so the uniform distributed load will be 7.60 kN/m2 and the axle line equivalent load will be 55.15 kN/m.

Modal parametric changes in a steel bridge with retrofitting

  • Walia, Suresh Kumar;Vinayak, Hemant Kumar;Kumar, Ashok;Parti, Raman
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.385-403
    • /
    • 2015
  • This paper presents the status improvement of an old damaged deck type rural road steel truss bridge through the modal parametric study after partial retrofitting. The dynamic and static tests on bridge were carried out as in damaged state and after partial retrofitting. The dynamic testing on the steel bridge was carried out using accelerometers under similar environmental conditions with same speed of the moving vehicle. The comparison of the modal parameters i.e., frequency, mode shape mode shape curvature, modal strain energy, along with the deflection parameter are studied with respect to structural analytical model parameters. The status up gradation for the upper and downstream truss obtained was different due to differential level of damage in the bridge. Also after retrofitting the structural elemental behavior obtained was not same as desired. The damage level obtained through static tests carried out using total station indicated further retrofitting requirement.

Consequence-based robustness assessment of a steel truss bridge

  • Olmati, Pierluigi;Gkoumas, Konstantinos;Brando, Francesca;Cao, Liling
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.379-395
    • /
    • 2013
  • Aim of this paper is to apply to a steel truss bridge a methodology that takes into account the consequences of extreme loads on structures, focusing on the influence that the loss of primary elements has on the structural load bearing capacity. In this context, the topic of structural robustness, intended as the capacity of a structure to withstand damages without suffering disproportionate response to the triggering causes while maintaining an assigned level of performance, becomes relevant. In the first part of this study, a brief literature review of the topics of structural robustness, collapse resistance and progressive collapse takes place, focusing on steel structures. In the second part, a procedure for the evaluation of the structural response and robustness of skeletal structures under impact loads is presented and tested in simple structures. Following that, an application focuses on a case study bridge, the extensively studied I-35W Minneapolis steel truss bridge. The bridge, which had a structural design particularly sensitive to extreme loads, recently collapsed for a series of other reasons, in part still under investigation. The applied method aims, in addition to the robustness assessment, at increasing the collapse resistance of the structure by testing alternative designs.

RAMS evaluation for a steel-truss arch high-speed railway bridge based on SHM system

  • Zhao, Han-Wei;Ding, You-Liang;Geng, Fang-Fang;Li, Ai-Qun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.79-92
    • /
    • 2018
  • The evaluation theory of reliability, availability, maintainability and safety (RAMS) as a mature theory of state evaluation in the railway engineering, can be well used to the evaluation, management, and maintenance of complicated structure like the long-span bridge structures on the high-speed railway. Taking a typical steel-truss arch bridge on the Beijing-Shanghai high-speed railway, the Nanjing Dashengguan Yangtze River Bridge, this paper developed a new method of state evaluation for the existing steel-truss arch high-speed railway bridge. The evaluation framework of serving state for the bridge structure is presented based on the RAMS theory. According to the failure-risk, safety/availability, maintenance of bridge members, the state evaluation method of each monitoring item is presented. The weights of the performance items and the monitoring items in all evaluation levels are obtained using the analytic hierarchy process. Finally, the comprehensive serving state of bridge structure is hierarchical evaluated.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.801-813
    • /
    • 2015
  • Flexural stiffness of bridge spans has become even more important parameter since Eurocode 1 introduced for railway bridges the serviceability limit state of resonance. For simply supported bridge spans it relies, in general, on accurate assessment of span moment of inertia that governs span flexural stiffness. The paper presents three methods of estimation of the equivalent moment of inertia for such spans: experimental, analytical and numerical. Test loading of the twin truss bridge spans and test results are presented. Recorded displacements and the method of least squares are used to find an "experimental" moment of inertia. Then it is computed according to the analytical method that accounts for joint action of truss girders and composite deck as well as limited span shear stiffness provided by diagonal bracing. Finally a 3D model of finite element method is created to assess the moment of inertia. Discussion of results is given. The comparative analysis proves efficiency of the analytical method.

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping

  • Yamaguchi, Hiroki;Matsumoto, Yasunao;Yoshioka, Tsutomu
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.523-541
    • /
    • 2015
  • Structural health monitoring of steel truss bridge based on changes in modal properties was investigated in this study. Vibration measurements with five sensors were conducted at an existing Warren truss bridge with partial fractures in diagonal members before and after an emergency repair work. Modal properties identified by the Eigensystem Realization Algorithm showed evidences of increases in modal damping due to the damage in diagonal member. In order to understand the dynamic behavior of the bridge and possible mechanism of those increases in modal damping, theoretical modal analysis was conducted with three dimensional frame models. It was found that vibrations of the main truss could be coupled internally with local vibrations of diagonal members and the degree of coupling could change with structural changes in diagonal members. Additional vibration measurements with fifteen sensors were then conducted so as to understand the consistency of those theoretical findings with the actual dynamic behavior. Modal properties experimentally identified showed that the damping change caused by the damage in diagonal member described above could have occurred in a diagonal-coupled mode. The results in this study imply that damages in diagonal members could be detected from changes in modal damping of diagonal-coupled modes.