• Title/Summary/Keyword: steel-fiber volume fraction

Search Result 172, Processing Time 0.029 seconds

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber (강섬유 혼입률과 피복두께에 따른 GFRP 보강근의 부착특성)

  • Choi, Yun-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.761-768
    • /
    • 2012
  • The purpose of this study is to investigate bond properties of GFRP used in SFRC (Steel fiber reinforced concrete) and normal concrete. The experimental variables were rebar diameter (D13, D16), steel fiber volume fraction (0~2%) and cover thickness ($1.5d_b$, $5.4d_b$). The experimental results showed a different failure mode depending on the cover thickness. Through the tested specimens, splitting failure occurred for the specimens with small cover thickness and pull out failure occurred in the specimens with large cover thickness. Introduction of steel fiber caused the specimens to have more ductile behavior of bond stresss-lip after peak stress, but they did not increase the bond strength significantly. These failure modes were shown in both steel reinforcement and GFRP. However, from the difference of micro structure of bond failure mechanism between steel rebar and GFRP rebar, more ductile behavior was observed in GFRP-specimens after maximum bond strength was reached.

A Study on the Shear Properties of Steel Fiber Reinforced Concrete Beams (강섬유(鋼纖維) 보강(補强)콘크리트보의 전단특성(剪斷特性)에 관한 연구(研究))

  • Moon, Je Kil;Hong, Ik Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.1-12
    • /
    • 1993
  • Four series of fiber reinforced concrete beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 36 reinforced concrete beams (including 21 containing steel fibers) are reported. Four parameters were varied in the study, namely, the concrete compressive strength, volume fraction of fibers, shear span-to-depth ratio, and the tensile steel reinforcement. The effects of fiber incorporation on failure modes, deflections, cracking shear strength, and ultimate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers. Based on these investigations, a method of computing the shear strength of steel fiber reinforced concrete beam is suggested. The comparisons between computed values and experimentally observed values are shown to verify the proposed theoretical treatment.

  • PDF

Steel Fiber Reinforcing Effect Analysis of Slab Panel Structure and Assessment Technics of Toughness (강섬유보강 패널구조의 보강효과 분석 및 인성평가 기법)

  • Jeon, Chan-Ki;Park, Sun-Kyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.209-220
    • /
    • 1999
  • This paper is aimed to evaluate the effectiveness of flexural toughness of slab panel structures($60{\times}60{\times}10$) reinforced by steel fiber instead of wire mesh. Steel fiber used in this study is double hooked Dramix type fiber. And the fiber length is 60mm, diameter is 0.8mm, Various assessment methods of toughness index are used to estimate the proper effectiveness. In this experimental study, we find that Johnston, JCI-SF4 and EFNARC method are more effective to assess the flexural toughness of slab panels than the others. And the steel fiber is very effective alternative material to reinforce slab panel structures instead of wire mesh. Fiber volume fraction of 0.5~0.75% is more useful than the others in enhancing the post-peak energy absorption and toughness index by Johnston's $I_{5.5}$ assessment method. And the slab panels reinforcing with steel fiber are more resistant to crack propagation than wire mesh reinforcing slabs.

Flexural Performance Characteristics of Amorphous Steel Fiber-Reinforced Concrete (비정질 강섬유보강콘크리트의 휨성능 특성)

  • Ku, Dong-Oh;Kim, Seon-Du;Kim, Hee-Seung;Choi, Kyoung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.483-489
    • /
    • 2014
  • In this study, the flexural test of amorphous steel fiber-reinforced concrete was performed according to ASTM C 1609 to investigate its flexural performances. The amorphous steel fibers have different configurations from conventional steel fibers : thinner sections and coarser surfaces. Primary test parameters are fiber type (amorphous and conventional steel fibers), concrete compressive strength (27 and 50 MPa), and fiber volume fraction (0.25, 0.50, and 0.75%). Based on the test results, flexural strength and flexural toughness of the amorphous and conventional steel fiber-reinforced concrete were investigated. The results showed that the addition of the amorphous steel fibers into concrete could enhance both flexural strength and toughness while the addition of the conventional steel fibers into concrete was mainly effective to increase the flexural toughness.

Role of fibers on the performance of geopolymer concrete exterior beam column joints

  • Raj, S. Deepa;Ganesan, N.;Abraham, Ruby
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.115-123
    • /
    • 2020
  • The performance of steel fiber reinforced geopolymer concrete beam column joints under cyclic loading was investigated. The volume fraction of fibers considered were 0.25% (19.62 kg/㎥), 0.5% (39.24 kg/㎥), 0.75% (58.86 kg/㎥) and 1% (78.48 kg/㎥). A total of fifteen specimens were prepared and tested under reverse cyclic loading. Test results were analyzed with respect to first crack load, ultimate load, energy absorption capacity, energy dissipation capacity, stiffness degradation and load deflection behavior. Test results revealed that the addition of steel fibers enhanced the performance of geopolymer concrete beam column joints significantly. The joints were analyzed using finite element software ANSYS. The analytical results were found to compare satisfactorily with the experimental values.

An Experimental Study on the Flexural Fatigue Behavior of Steel Fiber Reinforced High Strength Concretes Beams with Single Edged Notch (노치를 가진 강섬유 보강 고강도 콘크리트 보의 휨 피로거동에 관한 실험적 연구)

  • 구봉근;김태봉;김흥룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.120-125
    • /
    • 1992
  • The fatigue tests were performed on the high strength concrete beams with single edged notch which was reinforced steel fiber. The steel fibers were used 1.0 percent by volume fraction. These were tested consists of constant amplitude tests for different levels of loading. The test program included endurance limit with repect to flexural fatigue and relation of load-CMOD(crack mouth opening displacement). The results of test, it is found from S-N curve that the fatigue strength for a life of 2 million cycles of load was approximately 70percent with respect to the static ultimate strength .

  • PDF

Cyclic performance of steel fiber-reinforced concrete exterior beam-column joints

  • Oinam, Romanbabu M.;Kumar, P.C. Ashwin;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.533-546
    • /
    • 2019
  • This study presents an experimental investigation on six beam-column joint specimens under the lateral cyclic loading. The aim was to explore the effectiveness of steel fiber-reinforced concrete (SFRC) in reducing the transverse shear stirrups in beam-column joints of the reinforced concrete (RC) frames with strong-columns and weak-beams. Two RC and four SFRC specimens with different types of reinforcement detailing and steel fibers of volume fraction in the range of 0.75-1.5% were tested under gradually increasing cyclic displacements. The main parameters investigated were lateral load-resisting capacity, hysteresis response, energy dissipation capacity, stiffness degradation, viscous damping variation, and mode of failure. Test results showed that the diagonally bent configuration of beam longitudinal bars in the beam-column joints resulted in the shear failure at the joint region against the flexural failure of beams having straight bar configurations. However, all SFRC specimens exhibited similar lateral strength, energy dissipation potential and mode of failure even in the absence of transverse steel in the beam-column joints. Finally, a methodology has been proposed to compute the shear strength of SFRC beam-column joints under the lateral loading condition.

Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact (구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 손상특성)

  • Jang, Seok-Joon;Son, Seok-Kwon;Kim, Yong-Hwan;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.411-418
    • /
    • 2015
  • This paper investigates the effects of fiber volume fraction and panel thickness on face damage characteristics of steel fiber-reinforced concrete (SFRC) under high-velocity globular projectile impact. The target specimens were prepared with $200{\times}200mm$ prismatic panels with thickness of 30 or 50 mm. All panels were subjected to the impact of a steel projectile with a diameter of 20 mm and velocity of 350 m/s. Specifically, this paper explores the correlation between mechanical properties and face damage characteristics of SFRC panels with different fiber volume fraction and panel thickness. The mechanical properties of SFRC considered in this study included compressive strength, modulus of rupture, and toughness. Test results indicated that the addition of steel fiber significantly improve the impact resistance of conventional concrete panel. The front face damage of SFRC panels decreased with increasing the compressive toughness and rear face damage decreased as the modulus of rupture and flexural toughness increased. To evaluate the damage response of SFRC panels under high-velocity impact, finite element analysis conducted using ABAQUS/Explicit commercial program. The predicted face damage of SFRC panels based on simulation shows well agreement with the experimental result in similar failure mode.

Flexural Performance and Fire Resistance of Polyolefin Based Structural Synthetic Fiber Reinforced Concrete (폴리올레핀계 구조용 합성섬유보강 콘크리트의 휨성능 및 화재 저항성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • This study evaluated the flexural properties and fire resistance of polyolefm based structural synthetic fiber reinforced concrete. The effects of differing fiber length, dimension and fiber volume fraction were studied. Flexural and fire resistance test were conducted in accordance with the JCI SF-4 and RABT time heating temperature curve, respectively. The Flexural test results indicated that the polyolefln based structural fiber reinforcement showed an ability to increase the flexural toughness and good fire resistance significantly(as compared to steel fiber reinforcement).