• Title/Summary/Keyword: steel-concrete structure

Search Result 1,123, Processing Time 0.024 seconds

A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination (염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구)

  • Kim, Do-Gyeum;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF

A new steel jacket for concrete cylinders by using external pressure (외부압력을 이용한 강판보강 콘크리트 시편의 거동분석)

  • Cho, Sung-Chul;Choi, Eun-Soo;Park, Tae-Hyo;Cho, Baik-Soon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.511-512
    • /
    • 2009
  • The purpose of this study was to propose a new steel jacketing method that does not require a grout between steel and concrete and to compare its structure performance with that of the others jacketed concrete. The proposed steel jacketing method uses external pressures on steel jackets to attach it to the surface of concrete.

  • PDF

Effect of anchorage and strength of stirrups on shear behavior of high-strength concrete beams

  • Yang, Jun-Mo;Min, Kyung-Hwan;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.407-420
    • /
    • 2012
  • This study investigated possible ways to replace conventional stirrups used on high-strength concrete members with improved reinforcing materials. Headed bar and high-strength steel were chosen to substitute for conventional stirrups, and an experimental comparison between the shear behavior of high-strength concrete large beams reinforced with conventional stirrups and the chosen stirrup substitutes was made. Test results indicated that the headed bar and the high-strength steel led to a significant reserve of shear strength and a good redistribution of shear between stirrups after shear cracking. This is due to the headed bar providing excellent end anchorage and the high-strength steel successfully resisting higher and sudden shear transmission from the concrete to the shear reinforcement. Experimental results presented in this paper were also compared with various prediction models for shear strength of concrete members.

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1001-1021
    • /
    • 2015
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1,450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. This paper investigates the structural performances of SCS sandwich composite beams with ULCC as filled material. Overlapped headed shear studs were used to provide shear and tensile bond between the face plate and the lightweight core. Three-dimensional nonlinear finite element (FE) model was developed for the ultimate strength analysis of such SCS sandwich composite beams. The accuracy of the FE analysis was established by comparing the predicted results with the quasi-static tests on the SCS sandwich beams. The FE model was also applied to the nonlinear analysis on curved SCS sandwich beam and shells and the SCS sandwich beams with J-hook connectors and different concrete core including ULCC, lightweight concrete (LWC) and normal weight concrete (NWC). Validations were also carried out to check the accuracy of the FE analysis on the SCS sandwich beams with J-hook connectors and curved SCS sandwich structure. Finally, recommended FE analysis procedures were given.

An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint (강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hwang, Kyeong-Min;Hahm, Kyung-Won;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • This paper describes an experimental study on the mechanical characteristic and behavior of a structure that has a joint between the reinforced concrete (RC) member and steel plate concrete (SC) member. An out-of-plane flexural test on an L-type test specimen and in-plane shear test on an I-type test specimen were carried out by means of repeated cyclic loading until their failure. Based on the results, the former showed pull-out failure mode of anchored vertical bars while the latter exhibited flexural failure mode of the basement member. These results reveal that the maximum capacity of the specimens is 96% and 82%, respectively, compared with the theoretical value.

Effect of Ambient Temperature and Humidity on Corrosion Rate of Steel Bars in Concrete (환경 온·습도가 콘크리트 내 철근의 부식 속도에 미치는 영향 분석)

  • Du, Rujun;Jang, Indong;Cho, Junghyun;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.307-308
    • /
    • 2021
  • Corrosion of reinforced steel inside concrete is an important cause of performance degradation of reinforced concrete structures and has a profound influence on the durability of structures. In this study, three groups of different reinforced concrete structures exposed to the natural environment were subjected to chloride ion accelerated corrosion tests for up to 180 days. The corrosion velocity and ambient temperature of the samples were measured and recorded every day. Based on Faraday's law, the corrosion speed of steel bars could be measured, and the ambient temperature and humidity around the structure in corresponding time were compared. Through the measurement of up to 180 days, the influence of external ambient temperature and humidity on the corrosion speed of steel bars inside the concrete structure was found out. The results show that there is a good direct proportional relationship between temperature and corrosion speed. When the ambient temperature increases by 15℃, the corrosion rate increases by about one time.

  • PDF

Influence of creep on dynamic behavior of concrete filled steel tube arch bridges

  • Ma, Yishuo;Wang, Yuanfeng;Su, Li;Mei, Shengqi
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.109-122
    • /
    • 2016
  • Concrete creep, while significantly changing the static behaviors of concrete filled steel tube (CFST) structures, do alter the structures' dynamic behaviors as well, which is studied quite limitedly. The attempt to investigate the influence of concrete creep on the dynamic property and response of CFST arch bridges was made in this paper. The mechanism through which creep exerts its influence was analyzed first; then a predicative formula was proposed for the concrete elastic modulus after creep based on available test data; finally a numerical analysis for the effect of creep on the dynamic behaviors of a long-span half-through CFST arch bridge was conducted. It is demonstrated that the presence of concrete creep increases the elastic modulus of concrete, and further magnifies the seismic responses of the displacement and internal force in some sections of the bridge. This influence is related closely to the excitation and the structure, and should be analyzed case-by-case.

Displacement-based design method for an energy-dissipation self-centering wall panel structure

  • Sisi Chao;Guanqi Lan;Hua Huang;Huiping Liu;Chenghua Li
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.289-304
    • /
    • 2024
  • The seismic performance of traditional steel frame-shear wall structures was significantly improved by the application of self-centering steel-reinforced concrete (SRC) wall-panel structures in the steel frames. This novel resilience functionality can rapidly restore the structure after an earthquake. The presented steel frame with steel-reinforced concrete self-centering wall-panel structures (SF-SCW) was validated, indicating its excellent seismic performance. The seismic design method based on bear capacity cannot correctly predict the elastic-plastic performance of the structure, especially certain weak floors that might be caused by a major fracture. A four-level seismic performance index, including intact function, continued utilization, life safety, and near-collapse, was established to achieve the ideal failure mode. The seismic design method, based on structural displacement, was proposed by considering performance objectives of the different seismic action levels. The pushover analysis of a six-floor SF-SCW structure was carried out under the proposed design method and the results showed that this six-floor structure could achieve the predicted failure mode.

Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates

  • Song, Yuchen;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.143-162
    • /
    • 2019
  • A number of desirable characteristics concerning excellent durability, aesthetics, recyclability, high ductility and fire resistance have made stainless steel a preferred option in engineering practice. However, the relatively high initial cost has greatly restricted the application of stainless steel as a major structural material in general construction. This drawback can be partially overcome by introducing composite stainless steel-concrete structures, which provides a cost-efficient and sustainable solution for future stainless steel construction. This paper presents a preliminary numerical study on stainless steel-concrete composite beam-to-column joints with bolted flush endplates. In order to ensure a consistent corrosion resistance within the whole structural system, all structural steel components were designed with austenitic stainless steel, including beams, columns, endplates, bolts, reinforcing bars and shear connectors. A finite element model was developed using ABAQUS software for composite beam-to-column joints under monotonic and symmetric hogging moments, while validation was performed based on independent test results. A parametric study was subsequently conducted to investigate the effects of several critical factors on the behaviour of composite stainless steel joints. Finally, comparisons were made between the numerical results and the predictions by current design codes regarding the plastic moment capacity and the rotational stiffness of the joints. It was concluded that the present codes of practice generally overestimate the rotational stiffness and underestimate the plastic moment resistance of stainless steel-concrete composite joints.