• 제목/요약/키워드: steel-concrete composite bridges

검색결과 197건 처리시간 0.021초

콘크리트 건조수축에 의한 합성거더의 장기거동 (Long-term Behavior of Steel-Concrete Composite Girders due to Concrete Shrinkage)

  • 배두병;윤석구;함상희
    • 한국강구조학회 논문집
    • /
    • 제16권6호통권73호
    • /
    • pp.807-818
    • /
    • 2004
  • 콘크리트의 건조수축에 의한 합성거더의 장기거동을 평가하기 위해 수행한 실험과 이론적 분석방법에 대해 기술하였다. 합성거더를 제작하여 장기간 실내실험을 통해 콘크리트의 건조수축에 따른 합성보의 처짐, 곡률변화 및 변형률변화를 측정하였으며, 실험결과를 AEMM(Age-adjusted Effective Modulus Method)을 이용한 해석치와 비교하였다. 또한 콘크리트의 건조수축에 의한 합성거더의 장기거동에 영향을 미치는 여러 변수들에 대한 해석을 수행하였다. 실험결과 합성거더의 장기거동은 AEMM에 의해 적절히 평가할 수 있다는 것을 확인할 수 있었다. 합성거더의 콘크리트 단면에 커다란 인장응력이 발생하기 때문에 연속교 부모멘트부뿐만 아니라 단순교 정모멘트부에도 횡방향균열이 발생할 수 있다는 것을 보였으며, 횡방향 균열을 무시하는 경우 강거더에 작용하는 응력이 과대평가 될 수 있다는 것을 확인하였다. 이상의 연구결과를 토대로 콘크리트의 건조수축에 의한 합성거더의 장기거동 평가시 콘크리트 단면에 발생할 수 있는 횡방향균열을 고려하는 것이 합리적이라고 판단된다.

콘크리트 충전 강관을 갖는 프리스트레스트 합성형 거더의 강-콘크리트 계면 거동 (Nonlinear Finite Element Analysis of Composite Girder with Concrete Infilled Tube)

  • 신동훈;김영훈;이타;강병수;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.386-389
    • /
    • 2006
  • Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages of enhancing local buckling and flexural resistances resulting from the lateral confining effect of concrete due to the interactive reaction in the interface layer of steel tube and concrete. The interface behavior in concrete infilled tube of the test composite girder is analyzed by 8-node zero thickness interface finite element combined with 3-D. elastoplastic concrete constitutive model and 3-D. elastoplastic Mindlin shell element. The interface effects between infillled concrete and steel tube are investigated through the comparision of the experimental and numerical results.

  • PDF

정모멘트를 받는 프리스트레스트 합성형교의 휨 거동 (Flexural Behaviors of Prestressed Composite Girder Bridges subjected to Positive Flexural Moment)

  • 강병수;주영태;성원진;신동훈;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.415-418
    • /
    • 2005
  • Prestressed composite girder bridges with PS tendon at positive flexural moment region offer elastic behavior to higher loads, increased ultimate capacity and reduced structural steel weight. Two beams were tested to examine ultimate behaviors of prestressed composite girder bridges subjected to positive flexural moment. The experimental observations of the Prestressed composite girder bridges subjected to positive flexural moment are investigated and compared to the numerical results obtained by sectional analysis method, and 1-D. and 3-D. finite element analysis methods.

  • PDF

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

3차원 유한요소법을 이용한 강관합성 말뚝재료의 수평저항력 고찰 (Study on lateral resistance of steel-concrete composite drilled shafts by using 3D FEM)

  • 이주형;신휴성;최상호;박재현;정문경;곽기석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.683-690
    • /
    • 2008
  • Steel-concrete composite columns are popular for superstructures of bridges, and the outside steel attached to the shaft increases the shaft resistance due to confining concrete. In this study, lateral resistance of steel-concrete composite drilled shafts was evaluated quantitatively based on numerical analysis when steel casings are used as structural elements like composite columns. Ultimate lateral resistance of composite drilled shafts with various diameters was numerically calculated through 3D finite element analysis. For that, elasto-plastic model with perfectly plasticity is involved to capture the ultimate load. A commercial FEM program, MIDAS-GTS, is used in this study. Real field conditions of the West Coast, Korea were considered to set up the ground conditions and pile lengths required for this parametric studies. Detailed characteristics of the stress and displacement distributions are evaluated for better understanding the mechanisms of the composite shaft behavior.

  • PDF

연속 프리캐스트 합성바닥판의 비탄성 거동 (Inelastic Behavior of Continuous Precast Composite Slabs)

  • 심창수;정영수;민진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.447-450
    • /
    • 2005
  • A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in terms of strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.

  • PDF

A numerical model for the long-term service analysis of steel-concrete composite beams regarding construction stages: Case study

  • Marcela P. Miranda;Jorge L. P. Tamayo;Inacio B. Morsch
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.199-215
    • /
    • 2024
  • The Caynarachi Bridge is a 130 m long posttensioned steel-concrete composite bridge built in Peru. The structural performance of this bridge under construction loads is reviewed in this paper using numerical simulation. Hence, a numerical model using shell finite elements to trace its deformational behavior at service conditions is proposed. The geometry and boundary conditions of the superstructure are updated according to the construction schedule. Firstly, the adequacy of the proposed model is validated with the field measurements obtained from the static truck load test. Secondly, the study of other scenarios less explored in research are performed to investigate the effect of some variables on bridge performance such as time effects, sequence of execution of concrete slabs and type of supports conditions at the abutments. The obtained results show that the original sequence of execution of the superstructure better behaves mechanically in relation to the other studied scenarios, yielding smaller stresses at critical cross sections with staging. It is also demonstrated that an improper slab staging may lead to more critical stresses at the studied cross sections and that casting the concrete slab at the negative moment regions first can lead to an optimal design. Also, the long-term displacements can be accurately predicted using an equivalent composite resistance cross section defined by a steel to concrete modulus ratio equal to three. This article gives some insights into the potential shortcomings or advantages of the original design through high-fidelity finite element simulations and reinforces the understating of posttensioned composite bridges with staging.

LRFD에 의한 2경간 Preflex 합성형교에 관한 연구 (A Study on the two span preflex composite girder bridges with LRFD)

  • 구민세;박영제;오석태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.95-102
    • /
    • 1999
  • Preflex beams are prestressed by the predeflection technique, which enables the use of concrete-encased high strength steel beams where deflection or cracking of concrete, or both, would otherwise be excessive. This study presents the analysis of the two span preflex composite girder bridges with Load and Resistance Factor Design(LRFD), which is most widely used design nile in the advanced states. The results show that the comparison of LRR with Allowable Stress Design(ASD) according to span length.

  • PDF