• Title/Summary/Keyword: steel-concrete composite bridges

Search Result 196, Processing Time 0.028 seconds

Modeling of Noncomposite Skew Plate Girder Bridges (비합성형 판형사교의 모형화)

  • Moon, Seong-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.505-510
    • /
    • 2008
  • The design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the effects of interactions between the concrete deck and steel girders such as composite construction, and noncomposite construction on the dynamic characteristics of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The slip at the interfaces between the concrete deck and steel girders may bring about longer vibration periods that result in the reduced total seismic base shear.

  • PDF

Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors (바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구)

  • Han, Sang Yun;Park, Nam Hoi;Yoon, Ki Young;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.325-332
    • /
    • 2004
  • Cross sections of steel-plate girder bridges are divided into three cross sections of non-composite, partially composite, and fully composite sections, according to their composite characteristics. The Korean provision for the partially and fully composite sections specifies general usage of the stud of shear connectors, whereas the one for the non-composite section specifies empirical usage of slab anchors. However, the actual behavior of the cross sections of steel-plate girder bridges using slab anchors is close not to the non-composite action, but to the partially composite action. Therefore analytical and experimental studies on partial composites of steel-plate girder bridges using slab anchors are performed in this study. Intial stiffness of the slab anchor is obtained by the experimental study for the first time, and the composite characteristic of simple-span and two-span continuous steel-plate girder bridges is investigated by the finite element analyses for the second time. Based on the obtained initial stiffness, the reduction effect of tensile stresses in the concrete-slab on the intermediate support of the continuous bridge is also considered herein.

A Nonlinear Analysis on the Unit Model of Steel-Concrete Hybrid Deck for Bridges (교량용 강ㆍ콘크리트 합성 바닥판의 단위모델에 대한 비선형 해석)

  • 정광회;정연주;구현본;김정호;김병석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.85-91
    • /
    • 2003
  • This paper presents a 3D nonlinear analysis with slip in steel-concrete hybrid deck. In this study, it was founded that the limit slip modulus could classify the states of steel-concrete hybrid deck into three parts as full-composite, partial-composite, and non-composite, considering the longitudinal behavior and end-slip as well as the yield load and ultimate load of it. Also, it proved that the stress of lower steel plate at the support was increased, because of frictional forces by reaction forces in the steel-concrete hybrid deck. The end-slip did not occur near the full-composite state, but it was largely increased as the slip modulus decreased. On the basis of the EC 4, the state of steel-concrete hybrid deck classified into brittle behavior and ductile one using the end-slip of it

  • PDF

Effects of Interactions between the Concrete Deck and Steel Girders on the Behavior of Simply Supported Skew Bridges (단순 사교의 거동에 미치는 콘크리트 상판과 주형간의 상호작용 효과)

  • Moon Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.203-212
    • /
    • 2006
  • Although composite construction has many mechanical advantages over noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction caused large stresses in the bridge deck. But there is somewhat difficulty to apply noncomposite construction in the field because of the structural problem such as the slip at the interface between the concrete deck and steel girders. In this study, the validity of the application of the composite construction to skew angles with large skew angles is investigated by analyzing effects of two interactions such as composite and noncomposite actions between the concrete deck and steel girders on the behavior of skew bridges. A series of parametric studies for the total 27 simply supported skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The improvement of the behavior of composite skew bridges was examined by using the concept of the stiffness adjustment of bearings which I suggested in previous research. Results of analyses show that a more desirable behavior of skew bridges can be obtained from composite construction instead of noncomposite construction and the method of the stiffness adjustment of bearings results in a more rational and economical design of composite skew bridges and substructures.

Behavior of Main Girder in Continuous Girder System using Cross Girder Method (가로거더공법에서 주형의 연속화 시점에 따른 주형의 거동)

  • Park, Jeong-Ung;Seo, Won-Ju;Lee, Son-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.533-536
    • /
    • 2008
  • It is on increasing trend to employ H-rolled beams as main flexural members of bridges and of temporary structures owing to their handiness for construction, maintenance, and management. But in the case of applying H-rolled beams to bridges, maximum length of bridge span is around 20m. Therefore, to develop simplified steel-concrete composite bridge having long span using H-rolled beam needs new cross girder system at internal supports, optimization of bridge system without cross beams between supports and steel-concrete composite bridge deck. This study performs mechanical analysis of cross girder system for H-rolled beam steel-concrete composite bridge with long span and verifies its usefulness.

  • PDF

Effects of Flexural Strengths of Double Composite Box Girder Bridges on Different Concrete Depths (이중합성 박스 거더교의 콘크리트 타설 두께에 따른 휨강도 변화)

  • 신동훈;성원진;심기훈;최지훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.285-290
    • /
    • 2002
  • The double composite box girder is a structural system filled with concrete at the bottom of the steel box in the negative moment region increasing the flexural strengths. Flexural strengths of the double composite steel box girders are investigated through a series of the experimental tests and the numerical analysis. The experimental tests are performed on the three kinds of steel box girders with the different concrete depths including loom, 15cm, and 20cm. Moment-curvature relations are calculated based on the sectional analysis method describing the nonlinear natures of concrete and steel. In the finite element analysis the nonlinear nature of concrete is described based on the three dimensional four-parameter constitutive model recently developed and that of steel is described based on von Mises failure criterion. The ultimate flexural capacities of the box girders predicted using sectional analysis and finite element analysis show good agreement with those of the experiments.

  • PDF

Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs

  • Mirza, Olivia;Kaewunruen, Sakdirat;Kwok, Kenny;Griffin, Dane W.P.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.537-565
    • /
    • 2016
  • Australian railway networks possess a large amount of aging timber components and need to replace them in excess of 280 thousands $m^3$ per year. The relatively high turnover of timber sleepers (crossties in a plain track), bearers (skeleton ties in a turnout), and transoms (bridge cross beams) is responsible for producing greenhouse gas emissions 6 times greater than an equivalent reinforced concrete counterparts. This paper presents an innovative solution for the replacement of aging timber transoms installed on existing railway bridges along with the incorporation of a continuous walkway platform, which is proven to provide environmental, safety and financial benefits. Recent developments for alternative composite materials to replace timber components in railway infrastructure construction and maintenance demonstrate some compatibility issues with track stiffness as well as structural and geometrical track systems. Structural concrete are generally used for new railway bridges where the comparatively thicker and heavier fixed slab track systems can be accommodated. This study firstly demonstrates a novel and resilient alterative by incorporating steel-concrete composite slab theory and combines the capabilities of being precast and modulated, in order to reduce the depth, weight and required installation time relative to conventional concrete direct-fixation track slab systems. Clear benefits of the new steel-concrete composites are the maintainability and constructability, especially for existing railway bridges (or brown fields). Critical considerations in the design and finite element modelling for performance benchmarking of composite structures and their failure modes are highlighted in this paper, altogether with risks, compatibilities and compliances.

Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study

  • Le, Van Phuoc Nhan;Bui, Duc Vinh;Chu, Thi Hai Vinh;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1001-1019
    • /
    • 2016
  • The connector is the most important part of a composite beam and promotes a composite action between a steel beam and concrete slab. This paper presents the experiment results for three large-scale beams with a newly puzzle shape of crestbond. The behavior of this connector in a composite beam was investigated, and the results were correlated with those obtained from push-out-test specimens. Four-point-bending load testing was carried out on steel-concrete composite beam models to consider the effects of the concrete strength, number of transverse rebars in the crestbond, and width of the concrete slab. Then, the deflection, ultimate load, and strains of the concrete, steel beam, and crestbond; the relative slip between the steel beam and the concrete slab at the end of the beams; and the failure mechanism were observed. The results showed that the general behavior of a steel-concrete composite beam using the newly puzzle shape of crestbond shear connectors was similar to that of a steel-concrete composite beam using conventional shear connectors. These newly puzzle shape of crestbond shear connectors can be used as shear connectors, and should be considered for application in composite bridges, which have a large number of steel beams.

Life Cycle Cost Analysis of SCP Composite Girder Bridge for Railroad (철도용 SCP합성거더교의 LCC 분석에 관한 연구)

  • Kim, Dae-Sung;Cho, Sun-Kyu;Kwon, Chek;Choi, Young-Min
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.244-249
    • /
    • 2006
  • Recently, the SCP(Steel Confined Prestressed concrete) composite girders are developed to improve the characteristic such as displacement, vibration, and heavy dead load due to influence of self weight, and inefficiency of steel section of exiting girder-type railroad bridges. It is needed to verify the economical effciency of newly developed SCP composite girder bridge compared with the conventional girder-type bridges. In this paper, LCC analysis for alternative railroad bridges Is performed and its technique based on level of risk(probability of failure) is suggested. From the results, it may be stated that SCP composite girder bridge is more economical than a conventional one.

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.