• Title/Summary/Keyword: steel-concrete

Search Result 5,950, Processing Time 0.03 seconds

A Comparative Study of the Houses of Mies van der Rohe and Le Corbusier (미이스 반 데르 로에 주택과 르 꼬르뷔제 주택의 비교 연구)

  • 김용립
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2004
  • There are probably no architects of the 20th Century who had more influence on modern architecture than Mies van der Rohe and Le Corbusier. Although the two architects share one thing in common, namely, both are master of modernism, each has developed unique architecture of his own. The objective of this study is to investigate the characteristics of their works through a comparison analysis of the Ideas, design principles and architectural language reflected in the works, focusing on the houses. this study will also aim to provide a foundation for a new design that harmonizes the design principles and architectural language of the two. Through the study the following common points and differences were found between the houses of the two. A) Common points: Both architects avoided ornamentation In houses while placing weight on the functions of houses and they tried to plan rational floor plans by separating the wall from the structure. B) Differences: \circled1 The houses of Mies express the structure in a straight forward manner, while those of Corbusier are formative houses focusing more on shapes. \circled2 The shapes of the houses of Mies are limited to basic shapes, quadrangle while those of Corbusier employ various geometric curves. \circled3 Using steel and glass, the houses of Mies are light and transparent. On the contrary, using concrete, the houses of Corbusier are somewhat bulky with Three-dimensional changes. \circled4 The houses of Mies show the value of moderation based upon the classical principles of design, while the houses of Corbusier show the value of moderation based upon geometry. \circled5 The houses of Mies feature horizontal intoners with flexibility. However, Corbusier's houses have vertical interiors with some changes in the cross sections. \circled6 In terms of material, the interiors of Mies' houses employ materials with various tones and textures, while interiors of Corbusier's houses are painted in simple white. Summing up these characteristics, it could be said that the houses of Mies have logical and rational beauty, whereas the houses of Corbusier have more emotional beauty.

A Study on the Preference of Design Components of Shop Facade (숍 파사드 디자인 구성요소에 대한 선호도 연구)

  • Yeo, Mi;Oh, Sun Ae
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • The aim of this study is to figure out the preference features on design components of shop facade on the basis of the questionnaire survey on short-term memory and sensory memory of human right after an image experiment. As for a preceding research, this study examined the design features of facade into tangible elements and intangible elements, and also classified them into physical, aesthetical, marketing and symbolic components in detail. And, it extracted 5 representative elements in preceding studies including shape, material, pattern, color and sign, which is the standard of a questionnaire survey and preference analysis. The subjects of the experiment were 30 men and women who were over 20 years old majoring interior design. They were exposed to 20 images with 10 seconds respectively through a video, and were asked to respond the questionnaire promptly. The findings of preference analysis of design components of facade including shape, material, pattern, color and sign are as follows. Firstly, shape was the most interesting and attracting component, and designs applied with shape of objects such as 'web', 'drawer', 'wheel' and 'button' obtained high preference. Secondly, as for material, block, steel, exposed concrete board attracted higher preference as memorable materials than other materials. Material was affected by shape, pattern and color. Thirdly, pattern was the most lasting element. Designed pattern had higher preference than simple pattern. Fourthly, as for color, red and green with strong stimulation and attention attained priority having long lasting memory. Fifthly, when visiting a shop, sign out of 5 elements of shape, material, pattern, color and sign drew attention the most. As for the preference of location of sign, 'center top' was the most noticeable. The findings of this study could be utilized for facade design, and also could be used for commercialization considering highly preferred components, and top preference aspects of such elements. advised that to give an impression to customers is important to make a successful design for sales marketing, which, in turn, would lead customers to revisit the shop.

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

Development of high performance shotcrete for permanent shotcrete tunnel linings (Application of high-early strength cement with alkali-free accelerator in spring water condition) (영구 숏크리트 터널 라이닝 구축을 위한 고성능 숏크리트 개발 (용수부에서의 조강시멘트와 alkali-free급결제 적용 검토))

  • Park, Hae Geun;Lee, Myeong Sub;Kim, Jea Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • Since the mid of 1990, permanent shotcrete tunnel linings such as Single-shell and NMT have been constructed in many countries for reducing the construction time and lowing construction costs instead of conventional in-situ concrete linings. Among essential technologies for successful application of permanent shotcrete linings, high performance shotcrete having high strength, high durability and better pumpability has to be developed in advance as an integral component. This paper presents the idea and first experimental attempts to increase early strength and bond strength of wet-mixed Steel Fiber Reinforced Shotcrete (SFRS) in spring water condition. In order to increase early behavior of SFRS, a new approach using high-early strength cement with alkali-free liquid accelerator has been investigated. From the test results, wet-mix SFRS with high-early strength cement and alkali-free accelerator exhibited excellent early compressive strength improvement compared to the ordinary portland cement and good bond strength even under spring water condition.

  • PDF

A Study on the Strength at an Early Stage of the Compound Mixed into Polycarboxylate (Polycarboxylate에 혼합 사용된 혼화제의 조기강도 발현성상에 관한 연구)

  • Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.175-181
    • /
    • 2009
  • In this research, experiments were conducted to find out whether polycarboxylate could be used as a crude steel admixture for practical work, depending on the change in the replacement level of the compound mixed into polycarboxylate. Its fluidity was satisfactory, its airspace was a bit smaller than the KS standard, and its unit volume weight was proven to meet the standard. The amount of bleeding was smallest in B2, and in terms of the solidification time, the first and the last solidification was faster in A1, B1, and C1. With regard to the compressive strength in early days as acharacteristic of hardened concrete, all addition rates of 7-day C2 displayed the highest strength value, among which the addition rate of 1.3% had the biggest strength performance tendency. The seal strength also showed the strength performance rate which was about one tenth as big as that of the compressive strength. The length change rate resulting from dryness and contraction was proven to be good, and once the appropriate AE air entraining agent is used, it is evaluated to be a very useful and practical compound out in the field.

Mobile Augmented Reality for Teaching Bar Placing (철근 배근 교육을 위한 증강현실 컨텐츠 개발)

  • Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.471-477
    • /
    • 2018
  • The purpose of this study is to develop an mobile augmented reality for students to learn bar placing work, which is increasingly utilized in the construction field. In order to improve the understanding of the structural drawing, a structural drawing is used as a marker image, and an augmented reality is realized by superimposing a virtual 3D bar placing model that is placed according to the structural drawing on the screen. In addition to the 3D modeling, the contents are developed so as to help students to learn the interpretation method of 2D drawings, the development and splices of reinforcing steel, bar fabricating practice according to KCI structural concrete design code, and the process of bar placing. The results show that the augmented reality is positively evaluated in terms of interface style, perceived usefulness, perceived ease of use, perceived enjoyment, attitude toward using, and intention to use. The augmented reality is worth to be introduced because it has advantages of visualization and interaction in terms of education.

Evaluation of Seismic Performances on Prestressed Composite Coupling Beams with Discontinuous Webs (불연속웨브가 도입된 프리스트레스트 합성연결보에 대한 내진성능 평가)

  • Oh, Jae Yuel;Lee, Deuck Hang;Choi, Seung Ho;Kim, Kang Su;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.133-142
    • /
    • 2013
  • The shear wall system with coupling beams has been known as an effective means for moderate and high rise buildings up to 40 stories, because this structural system can provide the enhanced lateral stiffness compared to individual shear walls. Typical reinforced concrete coupling beams have difficulties in construction due to complicated reinforcing work on site, and steel coupling beams also have disadvantages in economical point of view because of a large number of stiffeners required for its stability under lateral loading. To overcome these disadvantages in existing coupling beam systems, this study developed the prestressed composite coupling beam with discontinuous webs, which have improved constructability, economic feasibility, and reduced sectional size. The reversed cyclic loading test on two prestressed composite coupling beams with discontinuous webs having different shear reinforcement ratios have been conducted to investigate their structural performances, and test results showed that the proposed composite coupling beams had good seismic performances.

Application of Load and Resistance Factor Design Format to Designing Flexible Pavements (LRFD 기법을 활용한 연성포장 설계방안에 관한 연구)

  • Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.1-10
    • /
    • 2003
  • The objective of pavement design, just as with the design of other structures, is to obtain the most economical designs at specified levels of reliability. Methods that yield designs with different levels of reliability are undesirable, and over the course of time design approaches in the U.S. and Europe have converged toward the Load and Resistance Factor Design (LRFD) format in order to assure uniform reliability. At present the LRFD format has been implemented in concrete, steel, wood and bridge design specifications. In this paper, reliability theories are used to illustrate the development of an LRFD format for Mechanistic-Empirical (M-E) design of flexible pavements as an alternative of its reliability module. It is shown in this paper that ten candidate pavement sections designed with a reliability level using the AASHTO design guide (1986) do not have uniform structural reliability in terms of pavement mechanistic distress such as fatigue cracking and the uniform reliability can be achieved by using the LRFD format.

  • PDF

Structural Analysis for Design of Anchor Straps for a Large-Scale LNG Storage Tank with Corner Protection and Inner Tank (코너프로텍션과 내조를 고려한 대용량 LNG 저장탱크 앵커스트랩의 구조설계를 위한 유한요소해석)

  • Jin, Chengzhu;Ha, Sung-Kyu;Kim, Seong-Jong;Lee, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1543-1548
    • /
    • 2011
  • Structural analysis is performed to design anchor straps for a large-scale-liquefied-natural-gas (LNG) storage tank with corner protection and an inner tank by considering structural integrity. Anchor straps made of 9% nickel steel are attached to the inner tank, corner protection, and concrete raft to prevent the failure of the inner tank during both normal and emergency operating conditions. Two finite element (FE) models were analyzed in this study. One is a stand-alone model of the anchor strap, while the other is an extended model of the substructure of the anchor strap, inner tank, and corner protection. Three-dimensional shell elements are used to effectively assess the bending and axial behavior of structures. The Tresca stress values in each part of the two models are calculated for operation under five different load-condition cases: normal operation, leakage of the LNG, hydro test, and two earthquake conditions.