• 제목/요약/키워드: steel-brace

검색결과 202건 처리시간 0.025초

반원형 스프링으로 횡지지된 건식형 좌굴방지가새의 개발 (Development of Buckling Restrained Brace Laterally Supported by Semicircular Springs)

  • 박금성;이상섭;홍성엽;배규웅
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.549-558
    • /
    • 2014
  • 내진 보강용 이력 댐퍼로 활용하기 위해 개발된 좌굴방지가새는 일본과 미국을 중심으로 활발히 연구되어 왔다. 좌굴방지가새는 일반적으로 심재와 외피 사이를 콘크리트 등으로 채워 제작된다. 좌굴방지가새에 콘크리트를 채우는 일은 습식 공정으로 제작 효율을 떨어뜨릴 수 있는 하나의 원인으로 심재와 콘크리트의 비부착 처리는 쉽지 않은 작업이다. 이를 개선하기 위해 반원형 스프링으로 심재를 횡지지하는 건식형 좌굴방지가새를 제안하였다. 건식형 좌굴방지가새를 실용화하기 위해 적절한 거동을 갖는 반원형 스프링의 형상을 해석적으로 조사하였다. 심재가 압축을 받아 고차모드로 좌굴하기 위해 필요로 하는 횡지지 강성과 강도를 이론적으로 평가하였다. 또한 실제 적용 조건을 반영하여 반원형 스프링의 실용적 소요강성와 강도를 계산하였다. 이 값을 기준으로 5가지 높이를 변수로 한 반원형 스프링의 비선형 좌굴해석을 통해 적절한 강종과 두께를 선정하였다. 끝으로 최종 선정된 반원형 스프링의 거동을 반영하여 이차원으로 모델링한 건식형 좌굴방지가새의 비선형 좌굴해석을 통해 건식형 좌굴방지가새의 좌굴강도는 반원형 스프링 사이의 거리를 좌굴 길이로 갖는 심재의 좌굴하중과 유사함을 확인하였다.

Theoretical and experimental study on deflection of steel-concrete composite truss beams

  • Wang, Junli;Li, Tian;Luo, Lisheng
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.91-106
    • /
    • 2018
  • This paper investigates the deflection of the steel-concrete composite truss beam (SCCTB) at the serviceability limit state. A precise solution for the distributed uplift force of the SCCTB, considering five different loading types, is first derived based on the differential and equilibrium equations. Furthermore, its approximate solution is proposed for practical applications. Subsequently, the shear slip effect corresponding to the shear stiffness of the stub connectors, uplift effect corresponding to the axial stiffness of the stub connectors and shear effect corresponding to the brace deformation of the steel truss are considered in the derivation of deflection. Formulae for estimating the SCCTB deflection are proposed. Moreover, based on the proposed formulae, a practical design method is developed to provide an effective and convenient tool for designers to estimate the SCCTB deflection. Flexure tests are carried out on three SCCTBs. It is observed that the SCCTB stiffness and ultimate load increase with an increase in the shear interaction factor. Finally, the reliability of the practical design method is accurately verified based on the available experimental results.

현장타설 끼움 전단벽 및 철골가새를 활용한 기존 학교 건물의 내진보강 (Seismic Retrofit of an Existing School Building using CIP-Infilled Shear Walls and Steel Braces)

  • 윤길호;김성호;김용철;윤현도
    • 교육시설 논문지
    • /
    • 제19권4호
    • /
    • pp.21-28
    • /
    • 2012
  • This study proposes a procedure for evaluating the seismic performance and retrofit of a typical reinforced building (R/C) school buildings contructed in the 1980s. The procedure is derived from the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings and Nonlinear Static Procedure (NSP) specified in Federal Emergency Management Agency (FEMA 356). In this study, the Japanese Standard was applied for evaluating the additionally required seismic performance in the existing school building. Cast-in-place (CIP) reinforced concrete infill walls and steel braces were used to seismically retrofit the existing school building located in the region of Hongsung in Chungnam. In the pushover analysis, i.e NSP, the hinge properties of columns, beams, infill walls and steel braces were carefully calibrated based on the existing experiment results in the available literatures. The predicted seismic performance for the retrofitted building was compared to that for the virgin building. Based on the seismic evaluation with the Japanese Standard and the FEMA 356 criteria, the addition of CIP reinforced concrete infill walls and steel braces have superior constructablility and can improve effectively the seismic performance of the existing school buildings constructed in 1980s.

고강도강 비좌굴 가새의 구조성능 평가 (Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels)

  • 박만우;주영규;김명한;김지영;김상대
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.33-42
    • /
    • 2008
  • 비좌굴 가새는 좌굴을 방지하고 인장영역과 압축영역에서 안정적인 이력거동을 나타내기 위하여 개발되었다. 본 연구에서는 비좌굴 가새의 구조적 성능을 평가하고자 부재의 강도와 하중재하방법을 변수로 하여 실험을 수행하였다. 모든 실험체는 강종을 다르게 적용한 심재와 보강재로 구성되었다. 실험 결과에 의하면 고강도강을 심재로 적용시 연성도가 구성능을 만족하지 못하였다. 그러나 고강도강을 심재로 적용시 일반강을 심재로 적용한 경우에 비해 최대내력은 상승하여 전체 에너지 소산 측면에서는 유사한 성능을 발휘하였다.

Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper

  • Ghamari, Ali;Haeri, Hadi;Khaloo, Alireza;Zhu, Zheming
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.383-392
    • /
    • 2019
  • Passive steel dampers have shown favorable performance in last earthquakes, numerical and experimental studies. Although steel dampers are more affordable than other types of damper, they are not economically justified for ordinary buildings. Therefore, in this paper, an innovative steel damper with shear yielding mechanism is introduced, which is easy to fabricate also can be easily replaced after sever earthquakes. The main goal of implementing such a mechanism is to control the possible damage in the damper and to ensure the elastic behavior of other structural components. The numerical results indicate an enhancement of the hysteretic behavior of the concentrically braced frames utilizing the proposed damper. The proposed damper change brittle behavior of brace due to buckling to ductile behavior due to shear yielding in proposed damper. The necessary relations for the design of this damper have been presented. In addition, a model has been presented to estimate load-displacement of the damper without needing to finite element modeling.

Development of a novel self-centering buckling-restrained brace with BFRP composite tendons

  • Zhou, Z.;He, X.T.;Wu, J.;Wang, C.L.;Meng, S.P.
    • Steel and Composite Structures
    • /
    • 제16권5호
    • /
    • pp.491-506
    • /
    • 2014
  • Buckling-restrained braces (BRBs) have excellent hysteretic behavior while buckling-restrained braced frames (BRBFs) are susceptible to residual lateral deformations. To address this drawback, a novel self-centering (SC) BRB with Basalt fiber reinforced polymer (BFRP) composite tendons is presented in this work. The configuration and mechanics of proposed BFRP-SC-BRBs are first discussed. Then an 1840-mm-long BFRP-SC-BRB specimen is fabricated and tested to verify its hysteric and self-centering performance. The tested specimen has an expected flag-shaped hysteresis character, showing a distinct self-centering tendency. During the test, the residual deformation of the specimen is only about 0.6 mm. The gap between anchorage plates and welding ends of bracing tubes performs as expected with the maximum opening value 6 mm when brace is in compression. The OpenSEES software is employed to conduct numerical analysis. Experiment results are used to validate the modeling methodology. Then the proposed numerical model is used to evaluate the influence of initial prestress, tendon diameter and core plate thickness on the performance of BFRP-SC-BRBs. Results show that both the increase of initial prestress and tendon diameters can obviously improve the self-centering effect of BFRP-SC-BRBs. With the increase of core plate thickness, the energy dissipation is improved while the residual deformation is generated when the core plate strength exceeds initial prestress force.

등가 에너지 개념을 이용한 비좌굴 가새골조의 내진설계 (Seismic Design of Buckling-Restrained Braced frame Using Equivalent Energy Concept)

  • 김진구;최현훈;원영섭
    • 한국지진공학회논문집
    • /
    • 제7권3호
    • /
    • pp.47-55
    • /
    • 2003
  • 본 연구에서는 등가 에너지 개념에 근거하여 비좌굴 가새골조의 간편한 내진설계방법을 제안하였다. 단자유도계로 치환된 구조물의 지진 입력에너지를 응답 스펙트럼으로부터 구한 후, 탄성에너지와 소성에너지를 등가 에너지 개념을 이용하여 산정한다. 이렇게 구한 소성에너지를 분배비에 따라 각 층에 분배하고, 모든 소성에너지는 가새에 의하여 소산된다고 가정하여 각 가새의 단면적을 산정할 수 있다. 제안된 방법을 검증하기 위하여 3층, 6층, 20층 가새골조를 제안된 방법으로 주어진 목표변위를 만족하도록 설계하고, 인공지진을 이용하여 결과를 검증하였다. 해석결과에 의하면 저층 건물의 최상층 변위는 비교적 목표변위를 만족하였으나, 20층 건물의 최상층 변위는 목표변위보다 매우 작아 가새가 과다하게 설계된 것으로 나타났다.

자기복구형 에너지소산 가새시스템을 적용한 종합병원의 내진보강효과 (Seismic Retrofitting Effects of General Hospital Using Self-Centering Energy Dissipative Bracing System)

  • 김태완;추유림;번다리 디워스
    • 한국지진공학회논문집
    • /
    • 제23권3호
    • /
    • pp.159-167
    • /
    • 2019
  • 2016 Gyeongju and 2017 Pohang earthquakes led Koreans to acknowledge that the Korean peninsula is not an earthquake-free zone anymore. Among various buildings crucial to after-shock recovery, general hospital buildings, especially existing old ones, are very significant so seismic retrofitting of those must be an important issue. Self-centering energy dissipative(SCED) brace is one of retrofitting methods, which consists of tendon with restoring force and friction device capable of dissipating seismic energy. The strength of the SCED brace is that the tendon forces a structure to go back to the original position, which means residual drift can be negligible. The residual drift is a very important parameter to determine usableness of general hospitals after shock. To the contrary, buckling-restrained braces(BRB) are also a very effective way to retrofit because they can resist both compressive and tensile, but residual drift may exist when the steel core yields. On this background, the seismic retrofitting effect of general hospitals reinforced with SCED braces was investigated and compared to that of the BRD in this study. As a result, although the floor acceleration cannot be reduced, the story drift and residual drift, and the shear demand of walls significantly decreased. Consequently, seismic retrofitting by SCED braces are very effective for domestic low-rise general hospitals.

Axially-loaded multiplanar tubular KTX-joints: numerical analysis

  • Zhang, Chenhui;Zou, Bo;Yang, Guotao
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.173-190
    • /
    • 2022
  • With the development of spatial structures, the joints are becoming more and more complex to connect tubular members of spatial structures. In this study, an approach is proposed to establish high-efficiency finite element model of multiplanar KTX-joint with the weld geometries accurately simulated. Ultimate bearing capacity the KTX-joint is determined by the criterion of deformation limit and failure mechanism of chord wall buckling is studied. Size effect of fillet weld on the joint ultimate bearing capacity is preliminarily investigated. Based on the validated finite element model, a parametric study is performed to investigate the effects of geometric and loading parameters of KT-plane brace members on ultimate bearing capacity of the KTX-joint. The effect mechanism is revealed and several design suggestions are proposed. Several simple reinforcement methods are adopted to constrain the chord wall buckling. It is concluded that the finite element model established by proposed approach is capable of simulating static behaviors of multiplanar KTX-joint; chord wall buckling with large indentation is the typical failure mode of multiplanar KTX-joint, which also increases chord wall displacements in the axis directions of brace members in orthogonal plane; ultimate bearing capacity of the KTX-joint increases approximately linearly with the increase of fillet weld size within the allowed range; the effect mechanism of geometric and loading parameters are revealed by the assumption of restraint region and interaction between adjacent KT-plane brace members; relatively large diameter ratio, small overlapping ratio and small included angle are suggested for the KTX-joint to achieve larger ultimate bearing capacity; the adopted simple reinforcement methods can effectively constrain the chord wall buckling with the design of KTX-joint converted into design of uniplanar KT-joint.

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • 국제초고층학회논문집
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.