• Title/Summary/Keyword: steel-CFRP

Search Result 316, Processing Time 0.039 seconds

CFRP - New Material for Telescope Manufacturing

  • Kim, Young-Soo;Kim, Jihun;Song, Je Heon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.81.3-81.3
    • /
    • 2015
  • Carbon Fiber Re-enforced Polymer (CFRP) has replaced steel, especially for mobile devices. As CFRP is stiff and light-weight, it has been applied to airplane, sport car, golf clubs, semiconductor transporter, satellites, etc. In the telescope, the plastic material was introduced to the supporting tubes or rods connecting the primary mirror assembly and the secondary mirror structure. Nowadays, even the mirror itself is produced by CFRP. In this poster, material properties and production of CFRP telescopes are presented, and pros and cons are discussed.

  • PDF

Influence of Hygrothermals on Residual Fatigue Bending Strength of CFRP Composite Laminates (CFRP적층재의 잔류피로굽힘강도애 미치는 열습의 영향)

  • 박노식;임광희;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 1997
  • This paper evaluates the static and fatigue bending strengths of CFRP (carbon fiber reinforced plastic) laminates subjected to hygrothermals. The specimens which had different stacking composition, orthotropic and quasi-isotropic laminated plates, were prepared for this experiment. A steel ball launched by the air gun collides against CFRP laminates to generate impact damages, and the 3-point fatigue bending test is carried out by using the impacted laminates to investigate the influence of hygrothermals on the effect on the residual bending fatigue strength of CFRP laminates.

  • PDF

Effects of deficiency location on CFRP strengthening of steel CHS short columns

  • Shahabi, Razieh;Narmashiri, Kambiz
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.267-278
    • /
    • 2018
  • Structures may need retrofitting as a result of design and calculation errors, lack of proper implementation, post-construction change in use, damages due to accidental loads, corrosion and changes introduced in new editions of construction codes. Retrofitting helps to compensate weakness and increase the service life. Fiber Reinforced Polymer (FRP) is a modern material for retrofitting steel elements. This study aims to investigate the effect of deficiency location on the axial behavior of compressive elements of Circular Hollow Section (CHS) steel short columns. The deficiencies located vertically or horizontally at the middle or bottom of the element. A total of 43 control column and those with deficiencies were investigated in the ABAQUS software. Only 9 of them tested in the laboratory. The results indicated that the deficiencies had a significant effect on the increase in axial deformation, rupture in deficiency zone (local buckling), and decrease in ductility and bearing capacity. The damages of steel columns were responsible for resistance and stiffness drop at deficiency zone. Horizontal deficiency at the middle and vertical deficiency at the bottom of the steel columns were found to be the most critical. Using Carbon Fiber Reinforced Polymer (CFRP) as the most effective material in retrofitting the damaged columns, significantly helped the increase in resistance and rupture control around the deficiency zone.

Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation

  • Kim, Sang Hun;Aboutaha, Riyad S.
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.333-353
    • /
    • 2004
  • Strength of reinforced concrete beams can easily be increased by the use of externally bonded CFRP composites. However, the mode of failure of CFRP strengthened beam is usually brittle due to tension-shear failure in the concrete substrate or bond failure near the CFRP-Concrete interface. In order to improve the ductility of CFRP strengthened concrete beams, critical variables need to be investigated. This experimental and analytical research focused on a series of reinforced concrete beams strengthened with CFRP composites to enhance the flexural capacity and ductility. The main variables were the amount of CFRP composites, the amount of longitudinal and shear reinforcement, and the effect of CFRP end diagonal anchorage system. Sixteen full-scale beams were investigated. A new design guideline was proposed according to the effects of the above-mentioned variables. The experimental and analytical results were found to be in good agreement.

An Experimental Study on Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능에 관한 실험적 연구)

  • 최기선;류화성;최근도;이한승;유영찬;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.997-1002
    • /
    • 2001
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that steel reinforcement, but the design strength of CFRP is normally reduced by the bond failure between RC and CFRP. Many researches have been carried out, concerned with bond behavior between RC and CFRP to prevent the unpredicted bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP hasn't been constructed. In this study, 3 beams specimen strengthened by CFRP under the variable of bonded length were tested to derive the design bond strength of CFRP to the RC flexural members. Also 2 beams specimen strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin and the amount of primer epoxy resin. From the test results, It is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau_{a}$=8kgf/$cm^{2}$.

  • PDF

Tests of concrete slabs reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Yu, Deng;Yang, Zeping;Chai, Xinjun
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.355-366
    • /
    • 2016
  • This paper reports the testing of concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) on the flexural behavior. Four concrete slabs were tested, a reference slab reinforced with steel bars, and three slabs reinforced with CFRP prestressed concrete prisms (PCP). All slabs were made with dimensions of 600mm in width, 2200mm in length and 150 in depth. All concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) exhibited CFRP bar rupture failure mode. It was shown that the application of the CFRP prestressed prisms can limit service load deflections and crack width, the increased level of prestress in the CFRP prestressed prism positively affected the maximum crack width. The deflection of concrete slabs reinforced with CFRP prestressed prisms decreased as prestress in the CFRP prestressed prism increased.

Flexural bearing capacity and stiffness research on CFRP sheet strengthened existing reinforced concrete poles with corroded connectors

  • Chen, Zongping;Song, Chunmei;Li, Shengxin;Zhou, Ji
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.29-42
    • /
    • 2022
  • In mountainous areas of China, concrete poles with connectors are widely employed in power transmission due to its convenience of manufacture and transportation. The bearing capacity of the poles must have degenerated over time, and most of the steel connectors have been corroded. Carbon fiber reinforced polymer (CFRP) offers a durable, light-weight alternative in strengthening those poles that have served for many years. In this paper, the bearing capacity and failure mechanism of CFRP sheet strengthened existing reinforced concrete poles with corrosion steel connectors were investigated. Four poles were selected to conduct flexural capacity test. Two poles were strengthened by single-layer longitudinal CFRP sheet, one pole was strengthened by double-layer longitudinal CFRP sheets and the last specimen was not strengthened. Results indicate that the failure is mainly bond failure between concrete and the external CFRP sheet, and the specimens fail in a brittle pattern. The cross-sectional strains of specimens approximately follow the plane section assumption in the early stage of loading, but the strain in the tensile zone no longer conforms to this assumption when the load approaches the failure load. Also, bearing capacity and stiffness of the strengthened specimens are much larger than those without CFRP sheet. The bearing capacity, initial stiffness and elastic-plastic stiffness of specimen strengthened by double-layer CFRP are larger than those strengthened by single-layer CFRP. Weighting the cost-effective effect, it is more economical and reasonable to strengthen with single-layer CFRP sheet. The results can provide a reference to the same type of poles for strengthening design.

Long-Term Behavior of CFRP Strips under Sustained Loads (지속하중을 받는 탄소섬유판의 장기 거동)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • Experimental study was performed to evaluate the long-term behavior of CFRP (carbon fiber reinforced polymer) strips under sustained loads including prestressing force in strengthening RC members with post-tensioned CFRP strips. Two types of CFRP strip such as unidirectional CFRP strip and hybrid CFRP strip which is composed of carbon fiber and steel plate were considered. Also two types of loading scheme were included in this study. Direct sustained loading test had been carried out to estimate the creep deformation and relaxation of CFRP strips including slip deformation at both mechanical anchorages for over 700 days. Also, flexural sustained loading test had been conducted to estimate the initial prestress losses on clamping the CFRP strips at jacking anchorages for over 90 days. From the sustained loading tests, it was observed that stress losses of unidirectional CFRP strips due to the creep deformation and relaxation of material itself and slip deformation at mechanical anchorage were ignorable. On the other hand, significant stress losses caused by the yielding of steel embedded in CFRP strips were found in case of hybrid CFRP strips due to the initial jacking force over steel yielding stress. Also, initial prestress losses during setting of CFRP strips on mechanical anchorage were about 10% of intial jacking force, which must be considered in the design.

Shear Behavior of Slender HSC Beams Reinforced with Stirrups using Headed Bars, High Strength Steels, and CFRP Bars (헤디드 바, 고장력 철근 및 CFRP 바로 전단보강된 세장 고강도콘크리트 보의 전단 거동 평가)

  • Yang, Jun-Mo;Kwon, Ki-Yeon;Choi, Hong-Shik;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2007
  • If conventional reinforcements are used for high-strength concrete (HSC) structures, a large amount of the reinforcement must be required to compensate for the brittleness of HSC and make the best use of HSC. This raises some structural problems such as steel congestion and an increase in self-weight. Therefore, alternative reinforcing materials and methods for HSC structures are needed. In this study, four full-scale beam specimens constructed with HSC (100 MPa) were tested to investigate the effect of the different shear reinforcements on the shear behavior. These four specimens were reinforced for shear stirrups with normal and high strength steels, headed bars, and carbon fiber-reinforced polymer (CFRP) bars, respectively. In addition, steel fibers were added to the HSC in the two of the specimens to observe their beneficial effects. The use of high strength steels resulted in the improvement of the shear capacity since the shear resistance provided by the shear reinforcements and the bond strength were increased. The specimen reinforced with headed bars also showed a superior performance to the conventional steel reinforced specimen due to the considerably high anchorage strength of headed bar. CFRP bars used in this research, however, seemed to be inadequate for shear reinforcement because of the inferior bond capacity. The presence of the steel fibers in concrete led to remarkable improvement in the ductility of the specimens as well as in the overall cracks control capability.

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.