• 제목/요약/키워드: steel yield stress

검색결과 352건 처리시간 0.02초

SM570TMC강을 이용한 콘크리트충전강관 합성기둥의 설계기준 항복강도 (The Specified Minimum Yield Stress of SM570TMC in CFT Composite Columns)

  • 이명재
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.205-213
    • /
    • 2008
  • SM570TMC 강재를 합성부재로 사용할 경우, KBC2005 0709에 따라 ${415N/mm^{2}}$를 초과하지 못한다. 이는 일반 강구조의 경우의항복강도 ${440N/mm^{2}}$에 미치지 못한다. 따라서 본 연구는 순수강재 (원형강관, 각형강관) 단주 압축실험과 충전형 합성부재 단주, 장주 압축실험을 통하여 SM570TMC강을 충전형 합성기둥으로 사용할 때, 항복강도를 저감시키지 않고 일반 강구조의 공칭강도를 그대로 사용할 수 있는지를 정량적으로 평가하는데 그 목적이 있다.

SM570TMC강의 매입형 합성기둥 적용시 설계기준 항복강도에 관한 연구 (The Specified Minimum Yield Stress of SM570TMC in Composite Columns)

  • 이명재;오영석;이은택
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.195-203
    • /
    • 2008
  • 현재 SM570TMC 강재를 합성부재로 사용할 경우, KBC2005 0709에 따라 ${415N/mm^{2}}$를 초과하지 못한다. 이는 일반 강구조의 경우의 항복강도 ${440N/mm^{2}}$에 미치지 못한다. 따라서 본 연구는 H형 단면을 가지는 순수강재 단주 압축실험과 매입형 합성부재 단주 압축실험을 통하여SM570TMC강을 매입형 합성기둥으로 사용할 때, 항복강도를 저감시키지 않고 일반 강구조의 공칭강도를 그대로 사용할 수 있는지를 정량적으로 평가하는데 그 목적이 있다.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • 제23권4호
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

고장력 철근을 사용한 RC부재의 부착특성에 관한 해석 및 실험 (Analysis and Environment on Bond Characteristic of High-Strength Steel RC Members)

  • 곽성태;윤영수;송영철;우상균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.443-448
    • /
    • 2001
  • This paper presents a bond characteristics of high strength steel reinforced concrete members. High strength steel is what yield strength is higher than that of normal strength steel. So, the amount of flexural steel needed in R.C. members can be decreased. In result, it is expected that the workability and structure quality can improve and man power can minimize. For this purpose, specimens were made and tested with experimental parameters, such as concrete strength, steel diameter and yield strength. The result showed that under same tensile force of steel, in case of substituting normal strength steel with high strength steel, maximum bond stress increased and development length didn't almost change. In addition, the governing equation of bond and bond stress verse slip relationship were derived and compared with test values such as maximum bond stress, slip and bond stiffness.

  • PDF

Mn-B 합금계 고강도 강의 동적 물성 (Dynamic Material Property of Mn-B Alloy High-Strength Steel)

  • 최창;홍성인
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.124-131
    • /
    • 1996
  • The dynamic material property of Mn-B ally high-strength steel is investigated through the rod impact test which is one of simple test methods for the analysis of the material behavior under high-strain-rate. Rod impact test is performed to produce the deformed shape of rod and analyzed by the one-dimensional theory based on conservation law and the two-dimensional hydrocode AUTODYN-2D. The dynamic yield stress is determined and compared with the static yield stress to investigate the strain-rate sensitivity of Mn-B alloy high-strength steel.

  • PDF

On the effect of GFRP fibers on retrofitting steel shear walls with low yield stress

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Bayat, M.
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1453-1461
    • /
    • 2015
  • In this article the non-linear behavior of the shear wall with low yield stress retrofitted with Glass Fiber Reinforced Polymer (GFRP) is investigated under pushover loading. The models used in this study are in ${\frac{1}{2}}$ scale of one story frame and simple steel plates with low yield stress filled the frame span. The models used were simulated and analyzed using finite elements method based on experimental data. After verification of the experimental model, various parameters of the model including the number of GFRP layers, fibers positioning in one or two sides of the wall, GFRP angles in respect to the wall and thickness of the steel plate were studied. The results have shown that adding the GFRP layers, the ultimate shear capacity is increased and the amount of energy absorbed is decreased. Besides, the results showed that using these fibers in low-thickness plates is effective and if the positioning angle of the fibers on the wall is diagonal, its behavior will improve.

자기적 방법에 의한 0.85% 탄소강의 열처리에 따른 미세조직 및 기계적 성질 평가 (Evaluation of Microstructures and Mechanical Property of Variously Heat Treated 0.85% Carbon Steel by Magnetic Method)

  • 변재원;권숙인
    • 한국재료학회지
    • /
    • 제13권2호
    • /
    • pp.81-87
    • /
    • 2003
  • Microstructures and mechanical properties of variously heat treated 0.85% carbon steel(eutectoid steel) were evaluated by magnetic property measurements. Microstructural analysis (pearlite interstellar spacing), measurement of mechanical properties(Rockwell hardness, yield stress, fracture stress) and magnetic properties(coercivity, remanence, hysteresis loss, saturation magnetization) were performed to clarify mutual relationships among these parameters. Water quenched specimens with martensite structure showed much higher coercivity and remanence than air cooled or furnace cooled specimens with pearlite structure. The linear dependence of coercivity and remanence on pearlite interlamellar spacing as well as on Rockwell hardness, yield stress and fracture stress was observed in the pearlitic steel. Hysteresis loss and saturation magnetization showed no distinct trend with pearlite interlamellar spacing.

Low-Cycle Fatigue Failure Prediction of Steel Yield Energy Dissipating Devices Using a Simplified Method

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1384-1396
    • /
    • 2018
  • One of the failure modes observed in steel yield energy dissipating devices (SYEDs) excited by a strong earthquake would be the low-cycle fatigue failure. Fatigue cracks of a SYED are prone to initiate at the notch areas where stress concentration is usually occurred, which is demonstrated by the cyclic tests and analyses carried out for this study. Since the fatigue failure of SYEDs dramatically deteriorates their structural capacities, the thorough investigation on their fatigue life is usually required. To do this, sophisticated modeling with considering a time-consuming and complicate fracture mechanism is generally needed. This study makes an effort to investigate the low-cycle fatigue life of SYEDs predicted by a simplified method utilizing damage indices and fatigue prediction equations that are based on the plastic strain amplitudes obtained from typical finite element analyses. This study shows that the low-cycle fatigue failure of SYEDs predicted by the simplified method can be conservatively in good agreement with the test results of SYED specimens prepared for experimental validation.

800MPa급 고강도강 보 부재의 국부좌굴 및 비탄성 거동 (Local Buckling and Inelastic Behaviour of 800 MPa High-Strength Steel Beams)

  • 이철호;한규홍;김대경;박창희;김진호;이승은;하태휴
    • 한국강구조학회 논문집
    • /
    • 제24권4호
    • /
    • pp.479-490
    • /
    • 2012
  • 본 연구에서는 고강도 강재의 플랜지 폭두께비가 강도 및 회전능력에 미치는 영향을 분석하고자 인장강도 800MPa급 고강도 강재인 HSB800, HSA800의 조립 H형강 보에 대해 실물대실험 연구를 수행하였다. 일반강재의 실험결과를 바탕으로 정립된 현행 기준의 폭두께비 규정을 고강도 강재에 그대로 확대 적용할 수 있는지의 여부를 평가하는 것을 연구의 주 목표로 하였다. 실험결과 고강도 휨부재는 강도측면에서 매우 만족스러운 성능을 발현하였으나, 회전능력측면에서는 일반강재 대비 부족한 성능을 발휘하였다. 이러한 고강도 강재의 부족한 회전능력은 항복참(yield plateau)의 부재와 높은 항복비를 갖는 고강도강의 재료적 특성과 관련됨을 입증하였다. 잔류응력 측정결과 잔류응력의 크기는 소재의 항복강도와 무관함을 재확인 할 수 있었다.

Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP

  • Ou, Jialing;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.189-200
    • /
    • 2021
  • The compressive strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. According to previous experimental results, the failure process and mechanism of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs is analyzed, and the loading process is divided into 3 stages, i.e., elastic stage, elasto-plastic stage and failure stage. Based on continuum mechanics, the theoretical model of C-CFRP-CFST stubs under axial compression is established based on the assumptions that steel tube and concrete are both in three-dimensional stress state and CFRP is in uniaxial tensile stress state. Equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs are deduced. Theoretical predictions from the presented equations are compared with existing experimental results. There are a total of 49 tested specimens, including 15 ones for comparison of yield strength and 44 ones for comparison of ultimate strength. It is found that the predicted results of most specimens are within an error limit of 10%. Finally, simplified equations for calculating both yield strength and ultimate strength of C-CFRP-CFST stubs are proposed.