• 제목/요약/키워드: steel slit wall

검색결과 12건 처리시간 0.018초

Experimental and analytical study of steel slit shear wall

  • Khatamirad, Milad;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.741-751
    • /
    • 2017
  • A steel slit shear wall has vertical slits and when it is under lateral loads, the section between these slits has double-curvature deformation, and by forming a flexural plastic hinge at the end of the slit, it dissipates the energy on the structure. In this article, Experimental, numerical and analytical analyses are performed to study the effect of slit shape and edge stiffener on the behavior of steel slit shear wall. Seismic behavior of three models with different slit shapes and two models with different edge stiffener shapes are studied and compared. Hysteresis curves, energy dissipation, out of plane buckling, initial stiffness and strength are discussed and studied. The proposed slit shape reduces the initial stiffness, increases the strength and energy dissipation. Also, edge stiffener shape increases the initial stiffness significantly.

Shaking Table Test and Analysis of Reinforced Concrete Frame with Steel Shear Wall with Circular Opening and Slit Damper

  • Shin, Hye-Min;Lee, Hee-Du;Shin, Kyung-Jae
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1420-1430
    • /
    • 2018
  • Earthquakes of 5.8 and 5.4 Richter scale recently occurred one after another in Korea, changing the Korean peninsula from an earthquake safe zone but 'earthquake danger zone'. Therefore, seismic reinforcements must expand to include structures with low seismic resistance in order to prepare for earthquakes on a larger scale in the future. This study investigated the performances of various seismic reinforcement systems such as X-braced steel rod reinforcement, steel shear wall with circular opening reinforcement, and slit damper reinforcement using shaking table test and computational analyses of seismic data in order to establish a proper seismic reinforcement plan. These three seismic reinforcement systems could increase the stiffness and strength of existing structures and reduce maximum drift ratio in the event of an earthquake.

Study of a new type of steel slit shear wall with introduced out-of-plane folding

  • He, Liusheng;Chen, Shang;Jiang, Huanjun
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.229-237
    • /
    • 2020
  • The steel slit shear wall (SSSW), made by cutting vertical slits in a steel plate, is increasingly used for the seismic protection of building structures. In the domain of thin plate shear walls, the out-of-plane buckling together with the potential fracture developed at slit ends at large lateral deformation may result in degraded shear strength and energy dissipation, which is not desirable in view of seismic design. To address this issue, the present study proposed a new type of SSSW made by intentionally introducing initial out-of-plane folding into the originally flat slitted plate. Quasi-static cyclic tests on three SSSWs with different amplitudes of introduced out-of-plane folding were conducted to study their shear strength, elastic stiffness, energy dissipation capacity and buckling behavior. By introducing proper amplitude of out-of-plane folding into the SSSW fracture at slit ends was eliminated, plumper hysteretic behavior was obtained and there was nearly no strength degradation. A method to estimate the shear strength and elastic stiffness of the new SSSW was also proposed.

강재 슬릿과 회전 마찰형 감쇠 장치를 결합한 복합 감쇠 장치의 실험적 구조 성능 평가 (Experimental Evaluation for Structural Performance of Hybrid Damper Combining Steel Slit and Rotational Friction Damper)

  • 김유성;강주원;박병태;이준호
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.101-109
    • /
    • 2019
  • In order to develop the compatible damping device in various vibration source, a hybrid wall-type damper combining slit and friction damper in parallel was developed. Cyclic loading tests and two-story RC reinforced frame tests were performed for structural performance verification. As a result of the 5-cyclic loading test according to KBC-2016 and low displacement cyclic fatigue test, The hybrid wall type damper increased its strength and the ductility was the same as that of the slit damper. In addition, As a result of the two-layer frame test, the reinforced frame had about twice the strength of the unreinforced frame, and the story drift ratio was satisfied to Life Safety Level.

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

조적채움벽 및 강재댐퍼 보강 RC 골조의 내진성능 평가에 관한 연구 (A Study on Seismic Performance Evaluation of RC Frame Retrofitted by Masonry Infill Wall and Steel Damper)

  • 이정한;양원직;강대언;송한범;오상훈;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.129-132
    • /
    • 2005
  • The primary purpose of this investigation is to find out the shear behavior and the shear capacity of RC bare frames, brick-infilled RC frames, and damper-retrofitted RC frames and to evaluate the average shear strength of brick--infill wall. The main variables art the absence of brick infill wall and steel plate slit damper. The test results show that the shear capacity of specimen IF-DR is 2.8 times as high as that of the specimen BF and it presents the fact that the retrofitting effect and the possibility of RC frame reuse with changing the slit damper is verified. And the average shear strength of the brick infill wall is figured to be at $5.0 kgf/cm^2$.

  • PDF

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.

Energy-based damage-control design of steel frames with steel slit walls

  • Ke, Ke;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1157-1176
    • /
    • 2014
  • The objective of this research is to develop a practical design and assessment approach of steel frames with steel slit walls (SSWs) that focuses on the damage-control behavior to enhance the structural resilience. The yielding sequence of SSWs and frame components is found to be a critical issue for the damage-control behavior and the design of systems. The design concept is validated by the full-scale experiments presented in this paper. Based on a modified energy-balance model, a procedure for designing and assessing the system motivated by the framework regarding the equilibrium of the energy demand and the energy capacity is proposed. The damage-control spectra constructed by strength reduction factors calculated from single-degree-of-freedom systems considering the post stiffness are addressed. A quantitative damage-control index to evaluate the system is also derived. The applicability of the proposed approach is validated by the evaluation of example structures with nonlinear dynamic analyses. The observations regarding the structural response and the prediction during selected ground motions demonstrate that the proposed approach can be applied to damage-control design and assessment of systems with satisfactory accuracy.

Numerical investigation of buckling-restrained steel plate shear wall under fire loading

  • Masoumi-Zahaneh, Fereydoon;Hoseinzadeh, Mohamad;Rahimi, Sepideh;Ebadi-Jamkhaneh, Mehdi
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.59-73
    • /
    • 2022
  • In this study, the seismic behavior of an all-steel buckling-restrained (AB) steel plate shear wall (SPSW) with incline slits under fire and cyclic loading was investigated. ABSPSW was composed of two thin steel infill plates with a narrow distance from each other, which were embedded with incline slits on each plate. These slits were in opposite directions to each other. The finite element (FE) numerical model was validated with three test specimens and after ensuring the modeling strategy, the parametric study was performed by considering variables such as wall plate thickness, slit width, strip width between two slits, and degree of temperature. A total of 256 FE numerical models were subjected to coupled temperature-displacement analysis. The results of the analysis showed that the high temperature reduced the seismic performance of the ABSPSW so that at 917℃, the load-bearing capacity was reduced by 92%. In addition, with the increase in the temperature, the yield point of the infill plate and frame occurred in a small displacement. The average decrease in shear strength at 458℃, 642℃, and 917℃ was 18%, 46%, and 92%, respectively, compared to the shear strength at 20℃. Also, with increasing the temperature to 917℃, ductility increased by an average of 75%

전단벽 제진시스템의 반복가력실험 (Cyclic Test of Shear Wall Damping Systems)

  • 안태상;김영주;김형근;장동운;최경규;김종락
    • 한국강구조학회 논문집
    • /
    • 제25권1호
    • /
    • pp.81-92
    • /
    • 2013
  • 기존 내진설계의 목적은 구조물의 갑작스런 피해로 인한 인명손실을 방지하는 것이다. 지난 수십년간 구조물의 내진성능을 향상시키기 위해서 효과적인 지진저항시스템을 개발하는 수많은 연구들이 진행되었다. 본 연구의 목적은 내진성능을 향상시킴과 동시에 지진 이후 보수가 편리하도록 하는 새로운 제진시스템을 제안하는데 있다. 제안된 제진시스템은 벽의 하부에 슬릿을 두고 제진장치가 수평으로 작동하도록 하여 지진에너지를 소산하도록 계획되었다. 제안된 시스템의 이력거동과 에너지소산능력을 조사하기 위해서 반복가력실험을 실시하였다. 실험결과는 제안된 시스템이 안정된 이력응답을 나타내며, 에너지의 소산은 제진장치에 집중되는 것을 보여준다.