• 제목/요약/키워드: steel shear wall with beam-only connected infill plate (SSW-BO)

검색결과 2건 처리시간 0.015초

Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates

  • Shekastehband, Behzad;Azaraxsh, Ali A.;Showkati, Hossein
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.505-521
    • /
    • 2017
  • The steel plate shear wall with beam-only connected infill plate (SSW-BO) is an innovative lateral load resisting system consisting of infill plates connected to surrounding beams and separated from the main columns. In this research, the effects of perforation diameter as well as slenderness ratios of infill plates on the hysteresis behavior of SSW-BO systems were studied experimentally. Experimental testing is performed on eight one-sixth scaled one-story SSW-BO specimens with two plate thicknesses and four different circular opening ratios at the center of the panels under fully reversed cyclic quasi-static loading in compliance with the SAC test protocol. Strength, stiffness, ductility and energy absorption were evaluated based on the hysteresis loops. It is found that the systems exhibited stable hysteretic behavior during testing until significant damage in the connection of infill plates to surrounding beams at large drifts. It is also seen that pinching occurred in the hysteresis loops, since the hinge type connections were used as boundaries at four corners of surrounding frames. The strength and initial stiffness degradation of the perforated specimens containing opening ratio of 0.36 compared to the solid one is in the range of 20% to 30% and 40% to 50%, respectively.

Behavior of fully- connected and partially-connected multi-story steel plate shear wall structures

  • Azarafrooza, A.;Shekastehband, B.
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.311-324
    • /
    • 2020
  • Until now, a comparative study on fully and partially-connected steel shear walls leading to enhancing strength and stiffness reduction of partially-connected steel plate shear wall structures has not been reported. In this paper a number of 4-story and 8-story steel plate shear walls, are considered with three different connection details of infill plate to surrounding frame. The specimens are modeled using nonlinear finite element method verified excellently with the experimental results and analyzed under monotonic loading. A comparison between initial stiffness and shear strength of models as well as percentage of shear force by model boundary frame and infill plate are performed. Moreover, a comparison between energy dissipation, ductility factor and distribution of Von-Mises stresses of models are presented. According to the results, the initial stiffness, shear resistance, energy dissipation and ductility of the models with beam-only connected infill plates (SSW-BO) is found to be about 53%, 12%, 15% and 48% on average smaller than those of models with fully-connected infill plates (SPSW), respectively. However, performance characteristics of semi-supported steel shear walls (SSSW) containing secondary columns by simultaneously decreasing boundary frame strength and increasing thickness of infill plates are comparable to those of SPSWs. Results show that by using secondary columns as well as increasing thickness of infill plates, the stress demands on boundary frame decreases substantially by as much as 35%. A significant increase in infill plate share on shear capacity by as much as 95% and 72% progress for the 4-story SSW-BO and 8-story SSSW8, respectively, as compared with non-strengthened counterparts. A similar trend is achieved by strengthening secondary columns of 4-story SSSW leading to an increase of 50% in shear force contribution of infill plate.