• Title/Summary/Keyword: steel section

Search Result 1,892, Processing Time 0.024 seconds

Changing Aspects of the Wall Types of Hahoe Village (하회마을 담장 형태의 변화양상)

  • Kim, Dong-Hyun;Lee, Won-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.87-96
    • /
    • 2017
  • This study focuses on the Andong Hahoe Village and seeks to identify the shape of the walls since the 1970s. The change of walls can be divided into four periods based on characteristics of materials, shape and distribution. The following is a summary of the results: First, In the 1970s, when Andong Hahoe Village was not designated as a cultural heritage, roof tiles hung on the earthen walls in the middle of the village were major forms. On the outside of the village, rice straw and pine needles were put on the earthen walls or bush clover walls were put in place around if walls were not built. Second, after being designated as a cultural heritage in the 1980s, readjustments for cultural heritages were carried out at the primary stage. However, the distribution of cultural heritages and major changes were not determined at this time since readjustments were mainly focused on the renovation of derelict houses or maintenance of infrastructures. Third, in the past the use of stone bricks for the Hahoe Village site had been difficult, but in the 1990s, replacements with soil-stone walls were identified and the usage of roof tiles increased. The portion of earthen walls, which used to be the major form in the prior era, decreased and this seems to have continued until the 2000s. Fourth, via a field survey, it was found that most of Hahoe village walls consisted of soil cement bricks mixed with cement, steel, lime, gravel. etc. Also, the scope of straw-stricken walls and bush clover walls were reduced to a section of area outside of the village. Fifth, from the 1970s to the present, there were changes to the walls in Hahoe Village including an increase in usages of new materials and an expansion of houses with tiled roofs on top in accordance with the replacement of walls of existing houses. Relevant reasons for this have been identified, such as the fading value of Fungsui(風水) and lack of original records, insufficient awareness and expertise in non-building areas, and the relationship between residents on repairing the wall.

Analysis on the Shear Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 전단 거동 분석)

  • Ha, Soo-Kyoung;Son, Guk-Won;Yu, Sung-Yong;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.18-28
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of U-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D, agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.