• Title/Summary/Keyword: steel rail

Search Result 205, Processing Time 0.035 seconds

Design Optimization of Safety Barrier Consisting of Steel Rail and CFRP Post (강재 레일과 CFRP 기둥으로 이루어진 방호울타리의 최적화 설계)

  • Kim, Jung Joong;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2013
  • In this study a hybrid safety barrier system consisting of steel rail and carbon fiber reinforced polymer (CFRP) post is considered. W hile CFRP post is selected for impact energy reflection due to its high strength, steel rail is selected for impact energy absorption due to its high ductility. A numerical model considering the elastoplastic behavior of steel is formulated to simulate the dynamic responses of the hybrid system subject to an impact load. A hybrid roadside guard rail system of steel rail and CFRP post is proposed and analyzed with a case study. The numerical model for the hybrid roadside guard rail system is used to find optimized design of the proposed hybrid system.

Impact Performance of Bridge Rail Composed of Composite Post and Tubular Thrie Beam (튜브형 트라이빔과 합성 지주를 사용한 교랑난간의 충격거동)

  • Ko, Man-Gi;Kim, Kee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.313-325
    • /
    • 2001
  • Tubular bridge rail was developed to restrain and redirect a 14ton van-type truck. The developed bridge rail permits better visibility than concrete safety-shape bridge rail, and it has better structural adequacy than the existing steel and aluminum bridge rails in Korea. The new bridge rail consists of a tubular thrie beam(TTB) rail and a steel guard rail, which are connected to composite posts. The TTB shape provides both better containment of diverse bumper heights and more tight fit between the ends of bridge rail and roadside guardrails than the existing bridge rail sections currently used in Korea. Making composite post by filling concrete inside the steel pipe of the same size as are used for the roadside guardrail post was found to be more efficient in increasing the stiffness and ultimate strength than simply increasing the size of the steel pipe. The system was crash-tested for the impact condition of 14ton-80km/h-$15^{\circ}$, and it satisfied all evaluation criteria set forth in NCHRP Report 350 for a Test Level 4 safety appurtenance. Acceptable performances were obtained in computer simulations for the impact condition of S2.

  • PDF

A Study on Fatigue Crack Propagation of Rail Steel under Constant and Mixed Mode Variable Amplitude Loadings

  • Kim, Chul-Su;Chung, Kwang-Woo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • Recently, axle load, operating speed and traffic density on railroads have had a tendency to increase and thereby cause additional pressure applied on used track. These operating conditions frequently result in service failure due to wear caused by wheel-rail contact and fatigue damage under cyclic loading. Among rail defects, the transverse crack, which has been the most dangerous type of fatigue damages, is developed from the subsurface crack near the rail running face and grows perpendicular to the rail surface. Therefore, it is necessary to investigate systematically the growth behavior of transverse crack for rail steel under mixed mode. In this study, the fatigue crack growth behavior of the transverse crack in rail steel was experimentally investigated under mixed-mode variable amplitude loadings.

A comparison study for the track maintenance system for the non-ballast steel plate bridge (무도상 판형교 레일 장대화에 따른 궤도 유지관리 비교연구)

  • Nam, Bo-Hyun;Jang, Tae-Cheol;Woo, Yong-Keun;Min, Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.401-410
    • /
    • 2007
  • Form the application of long rail system the non-ballast steel plate bridges, fatigue strength increase and rail noise reduction can be expected. This is mainly form the reduction of the rail impact at the rail joint locations which already made to behave together from welds. In the high speed rail, application of long rail system is essential because without long rail system, the required serviceability level can not be achieved. But even with this long rail systems, the thermal expansion from the girder can not be absorbed in the normal bearing systems, and these expansion cause between girder and rail. Also unexpected rail buckling and fracture through rail thermal tension may happen. It was found through numerical analysis and field measurement that these problems can be avoided by semi-fixed bearing system. In this study, the benefits of non-ballast plate bridge through long rail system, especially at the point of girder stability, girder stiffness increase and bearing maintenance will be reviewed.

  • PDF

Dynamic Behavior of a Open-Deck Steel Bridge considering Surface Irregularities of Rail Joints (레일이음매에 의한 주행면 불규칙성을 고려한 판형교의 동적거동)

  • Kim Sung-Il;Kim Hyun-Min;Oh Ji-Taek
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1028-1033
    • /
    • 2004
  • The open deck steel bridge is the most common type in railway bridges. Steel I-shaped girders are connected with sleepers directly without ballast and moving train loads are transmitted directly to the girder, so this bridge has weak characteristics on impact. Therefore, considerable accelerations can cause unsatisfactory dynamic behavior of the open deck steel bridge. Especially, Impact created at rail joints can increase the dynamic response of the bridge and this phenomenon would be injurious to passenger comfort. In the present study, dynamic behavior of the open deck steel bridge which has a rail joint is estimated through experimental studies and bridge-train interaction analysis considering surface irregularities by rail joints.

  • PDF

Fatigue Crack Growth Behavior of Rail Steel at Low temperature (저온하에서 레일강의 피로균열진전거동)

  • Kim Chul-Su;Yo Yoon-Kee;Kim Young-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.85-90
    • /
    • 2003
  • Among rail defects, the transverse crack, which has been the most dangerous fatigue damage, is developed from shelling near the rail running face and grows perpendicular to the rail surface. Moreover, the crack has occurred frequently fatigue damage during winter. Therefore, to assure the safety of railway vehicles, it is necessary to investigate growth behavior of transverse crack for rail steel. In this study, fatigue crack growth behavior of rail steel and its gas pressure welded part at room and low temperature are performed. The fatigue crack growth rate of the welded part was lower than that of the base part within a lower ${\Delta}K$ region at both room and low temperature, and this difference decreases with increasing the ${\Delta}K$ due to the decrease of the fracture toughness.

  • PDF

Evaluation of the Springback Characteristics for Automotive Steel Sheets by the S-Rail Forming Test (S-레일 시험을 통한 자동차용 판재의 스프링백 특성 평가)

  • Kwon, ln-Jae;Rim, Jae-Kyu;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.287-294
    • /
    • 2001
  • This study is aimed to evaluate the springback characteristics of automotive steel sheets through the S-rail forming test and to find the process condition under which springback can be reduced. Die set for the S-rail test has been made according to the dimension of the NUMISHEET '96 benchmark model. Experiment and finite element analysis have been performed on two kinds of automotive steel sheets: mild steel, SPCEN and high strength steel, SPRC. The test results show that the amount of springback is larger on the high strength steel SPRC than on the mild steel SPCEN, and decreases with increasing blank holding force as the case of material flow. And the reduction of friction has the effect of lowering the blank holding force in view of punch force and material flow. It is shown that the strain distribution over the whole specimen and along the specified sections calculated from the finite element analysis coincides with the measured data except local differences.

  • PDF

Continous rail absorber design using decay rate calculation in FEM

  • Molatefi, Habibollah;Izadbakhsh, Soroush
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.455-466
    • /
    • 2013
  • In recent years, many countries have added railway noise to the issues covered by noise regulations. It is known that the rail is the dominant source of rolling noise at frequency range of 500Hz-2000Hz for the conventional speeds (<160km/h). One of the effective ways to reduce noise from railway track is using a rail vibration absorber. To study the acoustic performance of rail absorber, the decay rates of vibration have long been used by researcher. In this paper, A FE model of a periodic supported rail with infinite element in ABAQUS is developed to study the acoustic performance of the rail absorber. To compute the decay rates, acceleration responses along the rail transferred to MATLAB to obtain response levels in frequency domain and then by processing the response levels, the decay rates obtained for each1/3octav band. Continous rail absorber is represented by a steel layer and an elastomer layer. The decay rates for conventional rail and rail with one-side absorber and also, the rail with two side absorber are obtained and compared. Then, to improve the system of rail absorber, a steel plate with elastomer layer is added to bottom of the rail foot. The vertical decay rate results show that the decay rate of rail vibration along the track is significantly increased around the tuned frequency of the absorber and thus the rail vibration energy is substantially reduced in the corresponding frequency region and also effective in rail noise reduction.