• Title/Summary/Keyword: steel plates

Search Result 1,478, Processing Time 0.028 seconds

Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.85-104
    • /
    • 2013
  • The present work deals with the thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined trigonometric shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-parameter Pasternak foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending response of functionally graded plates.

Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory

  • Bakhti, K.;Kaci, A.;Bousahla, A.A.;Houari, M.S.A.;Tounsi, A.;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.335-347
    • /
    • 2013
  • In this paper, the nonlinear cylindrical bending behavior of functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs) is studied using an efficient and simple refined theory. This theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The fundamental equations for functionally graded nanocomposite plates are obtained using the Von-Karman theory for large deflections and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as comparators.

A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates

  • Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bessaim, Aicha;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.257-276
    • /
    • 2016
  • In this paper, a new simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) plates is developed. The significant feature of this formulation is that, in addition to including a sinusoidal variation of transverse shear strains through the thickness of the plate, it deals with only three unknowns as the classical plate theory (CPT), instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear deformation theory. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and free vibration behaviours of FG plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments

  • Chen, Chun-Sheng;Liu, Fwu-Hsing;Chen, Wei-Ren
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.251-261
    • /
    • 2017
  • In this paper, thermal effect on the vibration and stability of initially stressed sandwich plates with functionally graded material (FGM) face sheets is analyzed. Material properties of FGM face sheet are graded continuously in the thickness direction. The variation of FGM properties assumes a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of arbitrarily initially-stressed sandwich plates including the effects of transverse shear deformation and rotary inertia are derived. The initial stress is taken to be a combination of a uniaxial extensional stress and a pure bending stress in the examples. The eigenvalue problems are formed to study the vibration and buckling characteristics of simple supported initially stressed FGM/metal/FGM plates. The effects of volume fraction index, temperature rise, initial stress and layer thickness of metal on the natural frequencies and buckling loads are investigated. The results reveal that the volume fraction index, initial stresses and layer thickness of metal have significant influence on the vibration and stability of sandwich plates with FGM face sheets.

Technical Criterion of Safety Evaluation of Leakage Preventing Plates for Alleviating Space Shortage Between Chemical Storage Tank and Dike (화학물질 저장 탱크와 방류벽 사이의 공간 부족 개선을 위한 누출 방지판의 안정성 평가 기준)

  • Lee, Eunbyul;Kwak, Sollim;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.42-50
    • /
    • 2018
  • The Chemical Controls Act strictly regulates for the chemical companies to establish sufficient space between the liquid chemical tank and dike, but facilities already installed suffer from the space shortage between the tank and dike. Installing leakage preventing plates on the dike is considered as one of the economic solutions that can alleviate the space deficiency. However, there is no technical and reasonable criterion for the safety evaluation of the leakage preventing plate on the dike. In order to address this problem, we provide generalized and verified calculating equations that give maximum height and horizontal distance of leakage trajectories. Through the proposed equations, proper heights of the leakage preventing plates on the dike can be easily determined. In this study, new calculating methods are also developed to determine the impact force of the liquid to the leakage preventing plates. In addition, we performed the reactivity experiments between four corrosive liquid chemicals and two stainless steel materials that are candidate substances for the construction of the leakage preventing plate. The results of this study is expected to be applicable as a guideline in the design of safe dike and its leakage preventing plates.

Early Stage of Algal Succession on Artificial Reefs at Muronohana, Ikata, Japan

  • Choi Chang Geun;Takayama Hiroshi;Segawa Shigeru;Ohno Masao;Sohn Chul Hyun
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Different substrata fixed as the roof (for shadow) on artificial iron reef had been developed as a tool for valuable fishery resources. The experiment was set up on a sandy bottom substratum at 8m depth in Muronohana, Ikata, Japan. Within one month of placement of the plates, diatoms dominated the experimental plates with a coverage of $100\%$ approximately. Enteromorpha intestinalis and Colpomenia sinuosa dominated within three months after the placement. E. intestinalis coverage on substrata was estimated $7\%$ on the plate shaped iron bar, $12-14\%$ on concrete plates, $18\%$ on the plate fixed pebble, $61\%$ on the plate to accumulated wood, and 80-100% on the steel materials plate. Whereas after four months of placement, C. sinuosa coverage on plates became $1-36\%$ on different plates, and $100\%$ on the plate to accumulated wood. The differences in E. intestinalis and C. sinuosa colonization on the different substrata were probably due to variations in their surface roughness influencing the settlement of zoospores, and thus gametophyte. development. After five months of placement, the above two species slowly disappeared.

  • PDF

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Development of Bond Strength Model for FRP-Plates Using Multi-layer Perceptron (다층 인식자 신경망 모형을 이용한 FRP 판의 부착강도 예측 모형 개발)

  • Kwak Kae-Hwan;Seok In-Soo;Hwang Hae-Sung;Sung Bai-Kyung;Jang Hwa-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1009-1014
    • /
    • 2006
  • Synthetic materials with excellent thermodynamic characteristics and the merit of anti-corrosion are frequently used in buildings and constructions for enforcement of bent in stead of steel plates. Among them, many practical studies have been conducted on bond strength because of increased bond strength of FRP plates. Previous investigators identified the bond strength of FRP plates through experiments with settlement of various variables to identify the bond strength. However, the experiments to identify the bond force are difficult to be conducted because they requires large expenses and long time for equipment arrangement, thus, are conducted with limitation. In this study, for bond experiment, optimum neural network model was developed with use of Back-propagation and Conjugate gradient technique of previous investigators. Learning was performed with use of the variables of previous investigators in developed neural network model so as to identify the bond strength of FRP plates. for verification of developed model, credibility and excellence was proven by comparing with the models of previous investigators.

  • PDF

Postbuckling and nonlinear vibration of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.17-29
    • /
    • 2018
  • The thermal effects on the buckling, postbuckling and nonlinear vibration behaviors of composite laminated trapezoidal plates are studied. Aiming at the complex plate structure and to simulate the temperature distribution of the plate, a finite element method (FEM) is applied in this paper. In the temperature model, based on the thermal diffusion equation, the Galerkin's method is employed to establish the temperature equation of the composite laminated trapezoidal plate. The geometrical nonlinearity of the plate is considered by using the von Karman large deformation theory, and combining the thermal model and aeroelastic model, Hamilton's principle is employed to establish the thermoelastic equation of motion of the composite laminated trapezoidal plate. The thermal buckling and postbuckling of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results reported in the literature. Moreover, the effects of the temperature with the ply-angle on the thermal buckling and postbuckling of the composite laminated trapezoidal plates are studied, the thermal effects on the nonlinear vibration behaviors of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are also presented for the different temperatures and ply angles.

The Effects of Heat Treatment on the Fatigue Life and Welding Residual Stress of Welded Carbon Steel Plates (탄소강 후판용접부의 피로수명 및 잔류응력에 미치는 열처리 영향)

  • An, I.T.;Kim, W.T.;Jo, J.R.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • The effects of heat treatment on the fatigue life and welding residual stress of welded plates were investigated in this study. The plates were welded by flux cored arc welding process, and post weld heat treated at $600^{\circ}C$ for 1 hour. The residual stresses of welded plates before and after post weld heat treatment were measured by hole drilling method. To measure the fatigue life of welded plates, low cycle fatigue tests under strain control and high cycle fatigue tests under load control were performed respectively, by using cylindrical specimens containing weld metal and heat affected zone. The obtained result shows that the post weld heat treatment reduces the residual stress, and resultantly changes the fatigue life of welded plate. Goodman diagrammatic analysis has also been performed to study the effect of post weld heat treatment on the high cycle fatigue life.