• Title/Summary/Keyword: steel panel wall

Search Result 88, Processing Time 0.022 seconds

Effect of loading rate on mechanical behavior of SRC shearwalls

  • Esaki, Fumiya;Ono, Masayuki
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.201-212
    • /
    • 2001
  • In order to investigate the effect of the loading rate on the mechanical behavior of SRC shearwalls, we conducted the lateral loading tests on the 1/3 scale model shearwalls whose edge columns were reinforced by H-shaped steel. The specimens were subjected to the reversed cyclic lateral load under a variable axial load. The two types of loading rate, 0.01 cm/sec for the static loading and 1 cm/sec for the dynamic loading were adopted. The failure mode in all specimens was the sliding shear of the in-filled wall panel. The edge columns did not fail in shear. The initial lateral stiffness and lateral load carrying capacity of the shearwalls subjected to the dynamic loading were about 10% larger than those subjected to the static loading. The effects of the arrangement of the H-shaped steel on the lateral load carrying capacity and the lateral load-displacement hysteresis response were not significant.

Stability and Earth Pressure Distribution of Excavated Earth Retaining Wall by Centrifugal Model Tests (원심모형실험에 의한 굴착 흙막이벽의 안정 및 토압분포)

  • Kim, Y.C.;Lee, C.K.;Kim, H.J.;Ahn, K.K.;Lee, M.W.;Heo, Y.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 1997
  • In this study, centrifugal model tests were performed to investigate the behavior of excavated earth retaining wall with the depth of excavation and different types of wall(aluminum, steel panel). Jumunjin standard sand was used for foundation soil. The raining method was adopted to form the required relative density of the model ground. The lateral earth pressure measured from tests were compared with estimated active earth pressure by Rankine's theory. The test results have shown that the earth pressure acting on the retaining wall and the rotation displacement of the wall are influenced by the depth of excavation and the type of wall. It was found from the test results that the deformation of the wall increases with the depth of excavation.

  • PDF

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.

Study on Development of air-passing soundproofing panel (통풍형 방음벽 개발에 관한 연구 I)

  • Yoon, Je-Won;Sim, Sang-Deok;Kim, Young-Chan;Ku, Bon-Sung;Eom, Joo-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.638-643
    • /
    • 2011
  • The aluminum soundproofing panel used to the traffic noise reduction will judge with the material to improve because the CO2 emission is greater than other soundproofing panel such as plastic soundproofing panel. Also, if the air-passing soundproofing panel which can endure the fast wind velocity will be developed, it judged that it can reached to the target of low CO2 traffic technology development using the reduction of material cost and the lower consumption of steel. The objective of this study is to improve the soundproofing panel and to develop the air-passing soundproofing panel for the replacement of aluminum sound proofing panel which is more emit CO2 than other soundproofing panel. And, we tried to develop the reduction technology of CO2 emission through the development of air-passing soundproofing panel. At first, the flow and noise simulation were conducted for the purpose of the calculation of wind pressure on soundproofing wall and noise exposure level on receiver points according to the open ratio of air-passing soundproofing panel. And the 1st and 2nd mockup of air-passing soundproofing panel were made, and the design load test were conducted for these mockup.

  • PDF

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Springback Control in the Forming Processes for High-Strength Steel Sheets (고강도 강판 성형 공정의 스프링백 제어)

  • Yang WooYul;Lee SeungYeol;Keum YoungTag;Hwang JinYoung;Yoon ChiSang;Shin ChirlSoo;Cho WonSuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.35-40
    • /
    • 2003
  • In order to develope springback control technology for high-strength steel sheets, some studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to know the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type, high strength sheet panels.

  • PDF

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

A Rigorous Examination of the Interplay Between Fire Resistance of 1-Hour Rated Fireproof Steel Walls and the Flexural Strength of Individual Panels (1시간 내화구조용 철강재 벽체의 내화성능과 단위 패널 휨강도의 관계 고찰)

  • Jeon, Soo-Min;Ok, Chi-Yeol;Kang, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.537-546
    • /
    • 2023
  • For the purpose of fire delineation within buildings, steel walls in Korea are mandated to undergo rigorous certification as fire-resistant entities, substantiated via a series of qualitative assessments. Predominantly, these evaluations comprise the fire resistance test paired with supplementary examinations; specifically for steel walls, these encompass the gas hazard and panel bending strength tests. Given the prevalence of semi-noncombustible core materials, gas hazard tests are largely rendered superfluous, pivoting the focus solely onto the panel bending strength test during the certification trajectory. This particular test is designed to gauge the flexural robustness of individual wall panels. An enhanced bending strength is postulated to fortify both the structural integrity and thermal insulation of the wall by mitigating potential deformations. In this scholarly exploration, an analytical deep dive was undertaken into extant, valid certification test datasets. The endeavor aimed to ascertain the depth of correlation between the designated fire resistance metric and the bending strength, the latter being the sole supplementary assessment for steel walls. In distilling the findings, it was discerned that temperature elevations beyond baseline values exhibited no statistically salient linkage with the panel's bending strength.

Evaluation of Steel Tube Connection in Precast Concrete Double Wall System (프리캐스트 콘크리트 더블월 시스템의 각형 강관 연결부 성능평가 )

  • Yujae Seo;Hyunjin Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2023
  • In this study, a double wall system is introduced, which was invented to simplify the complicated manufacturing process of the existing precast concrete (PC) double wall systems and to remove defects such as laitance that may occur during the production of concrete panels. An experimental study was conducted to investigate the tensile resisting capacity of the steel tube which is embedded in the precast concrete panel to keep the spacing between PC panels and to prevent damage of the PC panels during transportation and casting concrete onsite. The experiment was planned to determine the detail of effective steel tube connection considering the steel plate treatment method according to the formation of the opening, the presence of embedded concrete, and the reinforcement welding for additional dowel action as key variables. As a result, the ultimate tensile strength increased by 20-30% compared to the control specimen (ST) except for the steel tube specimen (ST_CP) which has steel plates bent inward at the end part of the steel tube. Since the specimen (ST_CON) filled with concrete inside the control specimen has no additional process and cost for the steel tube connections compared to the control specimen during the production of the developed double wall system, it is determined to be the appropriate detail of steel tube connection.

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.